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Genome instability, including nucleotide mutations, chromosomal 
rearrangements, and DNA dose aberrations, promotes genetic vari�
ation. Among these possible genomic aberrations, DNA copy 
numbers are of high diversity in normal human populations(Sharp 
������, 2005) and are associated with various human diseases, such 
as birth defects (X.�Y. Lu ������, 2008) and neurodegenerative dis�
eases (Walsh ��� ���, 2008; B. Xu ��� ���, 2008). Notably, tumour�
igenesis involves a process of accumulation of chromosomal muta�
  
*To whom correspondence should be addressed.  

tions that induce the activation of oncogenes, the loss of function 
of tumour suppressors, and cell proliferation. Copy number aberra�
tions (CNAs), in the form of regions of somatic amplification or 
deletion, are an important subclass of chromosomal mutation asso�
ciated with tumourigenesis(Pinkel and Albertson, 2005; Michael R 
Stratton ������, 2009).  

Investigations of CNAs and the biological mechanism 
through which they occur have shed new light on the human ge�
nome variations that exist among individuals with disease or nor�
mal phenotypes. Many studies have examined the differences in 
CNAs between tumour cells and normal cells and have estimated 
the rearrangement phylogeny of cancer genomes on the basis of 
their CNAs (Peter J Campbell ������, 2008; Erin D Pleasance ������, 
2010; Tao ������, 2011; C D Greenman ������, 2011; Navin ������, 
2011). CNAs, as well as single nucleotide polymorphisms (SNPs), 
in humans have revealed extensive genetic diversity in populations 
(Sudmant ������, 2010; W. Fu ������, 2010). A framework based on 
evolutionary genetics has been adopted to understand the disease�
causing deleterious CNAs or beneficial CNAs present in human 
populations (Nozawa ������, 2007; Gregory M Cooper ������, 2007; 
Perry ������, 2007; K. W. Lee ������, 2011; Elia ������, 2011). 

The successful characterisation of copy number profiles is the 
first step in pinpointing the CNAs that have significant biological 
roles in disease occurrence and normal phenotypic variation. In the 
past 15 years, profound advances have been made in the major 
technologies offering genome�wide scanning of CNAs, such as 
array�based comparative genomic hybridisation (aCGH) with high�
density oligo probes (Solinas�Toldo ��� ���, 1997; Bentz ��� ���, 
1998), SNP genotyping arrays (M. Lin ������, 2004), and recently 
developed next�generation sequencing�based approaches 
(Shendure and Ji, 2008). Array�based technologies generate ana�
logue fluorescence signals that are prone to noise (Pinto ��� ���, 
2011; Haraksingh ������, 2011; Xi ������, 2011), and short�read se�
quencing platforms provide an effective alternative way of identi�
fying CNAs. Next�generation sequencing technologies provide 
high�resolution, nucleotide�level digital readouts of the genomic 
composition of cells (Ding ��� ���, 2010; Garvey, 2010; Mardis, 
2011). Especially since the genomes of more and more species 
have been sequenced and assembled, resequencing has become 
increasingly more convenient for CNA analysis than the existing 
array�based technologies, which require significant work to design 
new sets of probes. Resequencing strategies for genomes, includ�
ing exome sequencing and whole genome sequencing (WGS), 
confer benefits in detecting CNAs and rearrangements (Xi ��� ���, 
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2011; Sathirapongsasuti ������, 2011; Alkan ������, 2011; Medvedev 
������, 2010). Both the read depth and the minor allele frequencies 
(MAFs) of heterozygous loci estimated from the sequencing data 
are informative in inferring copy numbers. Low minor allele fre�
quencies have been utilised, in addition to read depth, to screen for 
CNA segments conferring adaptive advantages and to confirm the 
breakpoints of CNAs (Tao ������, 2011; Nguyen ������, 2006; Xie 
and Tammi, 2009; Abyzov ��� ���, 2011; Krumm ��� ���, 2012; 
Simpson ������, 2010).  

However, sequencing biases can be introduced from many 
sources and may negatively impact the precise measurement of 
read depth and allele frequency throughout the genome. Uneven 
sampling in DNA fragmentation during library preparation, PCR 
bias due to the GC�content of fragments, and errors in the mapping 
of reads are all sources of variability in the characterisation of 
genomic regions. In addition to these sources of bias, exome se�
quencing has an excessive allele bias due to the unbalanced sam�
pling of the two alleles that can result from differences in probe 
affinity (Asan ��� ���, 2011). Unlike deep�coverage (>20X) WGS 
data, low�coverage (1X~3X) WGS data fail to provide important 
information regarding the allele frequencies of heterozygous loci. 
Efforts have been made to overcome these shortcomings in the 
sequencing data, and both GC correction and hidden Markov mod�
els have been integrated into the statistical tools used to detect 
CNAs; however, the success of these efforts has been limited (Xie 
and Tammi, 2009; Abyzov ������, 2011; Krumm ������, 2012; Yoon 
������, 2009). Restriction site�associated DNA (RAD) sequencing is 
a targeted sequencing technique that involves cutting genomic 
DNA with at least one restriction enzyme and isolating the target 
sequences from entire genomes. RAD sequencing was developed 
to efficiently identify single nucleotide polymorphisms, map 
QTLs, and measure the genetic structure of natural populations of 
various non�model organisms (Baird ������, 2008; Robinson ������, 
2012; P A Hohenlohe ������, 2010; Davey ������, 2011). Intuitively, 
the majority of CNA segments would be covered by densely 
packed genome�wide RAD reads. Hence, the RAD sequencing 
strategy holds promise for CNA analysis. Herein, we proposed this 
wet�lab strategy, RAD sequencing, to cover approximately 5% of 
the genome of a hepatocellular carcinoma (HCC) sample for opti�
mal CNA analysis. Using the same sample, we systematically 
compared the performance of RAD sequencing with that of the 
most commonly used alternative strategies in constructing the 
CNA profile. From this study, there is sufficient evidence to sup�
port the notion that the RAD sequencing strategy, which allows a 
precise measurement of both the read depth and allele frequency, is 
a comprehensive solution to the problem of CNA characterisation. 

'�  (�)%���

��������	
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We recruited a female patient who had a chronic Hepatitis B Virus (HBV) 
infection and who was diagnosed with HCC at the age of 35. The tumour 
section was determined to be grade II to III HCC with prominent clear cell 
components. The adjacent non�tumour tissue was dissected as a control. 
�

���������
��
������

Fragments adjacent to restriction sites were collected based on the method 
designed by N A. Baird et al(Baird ��� ���, 2008). 2ug of genomic DNA 
from the tumour sample was digested for 30 min at 37°C using 1 Kl EcoRI�
HF  in a 50�Kl reaction volume. A modified P1 adapter with a single 5’�

AATT�3’ cohesive end was added to the samples at the same molarity as 
the tags in a 20 Kl T4 ligase reaction system. Restriction digest by an en�
zyme with a palindromic target sequence enabled the ligation of the adapter 
to the upstream and downstream sequences flanking the restriction sites. 
Following sonication, the fraction of the sonicated ligation products corre�
sponding to a fragment size range of 250�350 bps was retrieved. The DNA 
fragments were then end�repaired, ligated to modified illumina P2 adapters, 
and amplified. To increase the sequencing specificity for sequences adja�
cent to restriction sites, we adjusted the sequence of the sequencing primer 
to ACACTCTTTCCCTACACGACGCTCTTCCGATCTAATTG by add�
ing 5’�AATTG�3’ to its 3’ end. In RAD sequencing, 100 bps single�end 
reads were generated using a Hiseq 2000.  We designed a compact refer�
ence based on the framework of the human NCBI36/hg18 genome assem�
ble which consisted of groups of 100 bps genomic sequences flanking the 
known EcoRI restriction sites. The BWA software was used to align the 
raw RAD sequencing data. Total 80X RAD data for the tumour sample 
were subjected to downstream analysis. 
 
��������
�
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���������������
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����� 
For exome sequencing, an Agilent SureSelect Human All Exon Kit was 
used to capture 1.22% (37 Mb) of the human genome and the reads were 
sequenced with SOLiD(Tao ��� ���, 2011). We utilized the BWA program 
for the alignment of SOLiD reads to the exome regions of NCBI36/hg18 
whole genome assembly.56X uniquely mappable reads were obtained. 
Whole�genome reads for the same tumour sample were sequenced accord�
ing to manufacturer’s standard protocols on two platforms: Solexa and 
SOLiD (Tao ��� ���, 2011).The reads were mapped to the NCBI36/hg18 
whole genome assembly. We utilized the BWA program for the alignment 
of both SOLiD reads and Solexa reads with the default parameters. Total 
20X uniquely mappable reads for the tumour sample were subjected to 
downstream analysis. WGS data (20X) were also generated from the adja�
cent non�tumour sample for use as the control (Tao ������, 2011). 
�
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We adopted the mean value of the windowed coefficient of variation as a 
measure of the dispersion of the read depth signals. The windowed coeffi�
cient of variation (WCV), a normalised measure of the dispersion of a 
probability distribution, is defined as the ratio of the standard deviation σ to 
the mean K in a window:   

��	= 
σ

�
 , 

Another statistic used in our analysis is the absolute difference of 
Gaussians (ADOG), which is defined as:  

� (�; 1� , 2� ,σ )= 1
σ 2π

exp(−
2(�− 1� )

2 2
σ

)− 1
σ 2π

exp(−
2(�− 2� )

2 2
σ

)  , 

The integral of the ADOG function reflected the visibility of the edges 
and was used to measure the edge sharpness distinguishing the CNA 
breakpoints. In practice, the parameters of two distributions were estimated 
with the read depths of all the loci in the 5M�length window upstream and 
downstream to each breakpoint, respectively. The integral value of ADOG 
for each breakpoint was computed based on the estimated parameters. �
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We defined N consecutive restriction sites as a unit and calculated the read 
counts in the unit to represent the read depth profile for comparisons across 
different sequencing strategies. Here, low�coverage WGS data covered the 
whole genome at a depth of approximately 3X and were collected from two 
lanes of Solexa sequencing. The read depth profiles were generated with 
various N values from RAD and WGS deep�sequencing data. Box�plots of 
the windowed coefficient of variation (WCV) showed that a smooth and 
stable measurement of the dispersion of the read depth profiles was 
achieved when we chose N values of no less than 10 (Supplementary Fig�
ure S1). Therefore, 10 consecutive restriction sites were treated as a unit in 
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this study. We took two�step method to define the region without genomic 
alteration under the two assumptions that the percentage of genome altered 
might be larger than 50% and there are some balance amplifications of both 
alleles. Firstly, we chose candidate regions where the heterozygous sites 
had MAF of 0.5. Next, the probability distribution function of read depth 
was estimated for loci within the candidate regions and then the read depth 
with maximum probability value was determined as the value taken to 
normalize the data. In our data, this value was almost the same as the medi�
an value of read depths for loci within the candidate regions.  

Heterozygous sites were extracted from the deep�sequencing WGS da�
ta obtained from the adjacent non�tumour sample according to the follow�
ing criteria: (1) the candidate sites were germ�line mutation sites that were 
included in the SNP database dbSNP130; (2) the total read depths of the 
sites were not lower than 20; (3) the estimated minor allele frequencies of 
the sites in the adjacent non�tumour sample were not less than 0.3; (4) the 
interval between two candidate sites was more than 10bps. The minor allele 
frequency (MAF) of each heterozygous site was estimated using the read 
depth of each allele from RAD, deep WGS, and exome sequencing data 
from the tumour sample. Usually, the MAF baseline was below 0.5 because 
of marginal effects of the integer read depth ratio. The MAF baseline was 
approximately 0.4 for the WGS and 0.45 for the RAD sequencing. 

  
��%��
�
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We used the JointSLM algorithm, which employs two independent stochas�
tic processes by means of the Shifting Level Model (SLM), to split the read 
depth profiles into distinct segments (Magi ������, 2011). Then, the candi�
date CNAs were identified after merging neighbouring segments with 
similar copy numbers using the FastCall algorithm (Benelli ��� ���, 2010). 
The above computational process is well established and widely used. The 
same process was applied to all sequencing data. Three non�CNA regions 
that were supported by both the read depth and minor allele frequency 
values obtained from all of the sequencing strategies were validated via 
qPCR to calibrate the baselines of the read depth profiles. Deletion and 
amplification were defined according to whether the changes in read depth 
values observed for the regions corresponded to the gain or loss of at least 
20% relative to the baseline. We calculated the average minor allele fre�
quency of each CNA based on all the heterozygous sites within the CNA 
region. The criterion that the average MAF differed from the frequency 
baseline by 0.05 was used to qualify the fidelity of the CNA segments. 
�
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We simulated 2×100 paired�end reads, covering the human genome at 
approximately 50X, to assess the mappability of a diploid genome. The 
read counts in a 4�kb window were calculated and calibrated by dividing 
the median value across the whole chromosome. Segmentation of the dip�
loid genome was performed by the standard pipeline combining the 
JointSLM and FastCall algorithms. The low� and ultra�mappable regions 
were delimited as segments with outlier read depth values (20% change) 
compared to the baseline of 1.0. The CNAs in which more than 50% of the 
sequence spanned regions that were low� or ultra�mappable were defined as 
those that were associated with abnormal mappability. 
�
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The SequenomTM platform was employed to screen approximately 58 het�
erozygous sites with differential allele frequencies identified across differ�
ent sequencing strategies in order to assess the precision of MAF estima�
tion from sequencing data. The frequency measurement at each site was 
replicated three times to account for technical variation associated with the 
method. Genotyping primers and extension probes were on�line designed 
with default parameters and were confirmed by in�silico PCR amplification 
prior to synthesis and standard purification. Mass spectrometric genotyping 
using TypePLEX chemistries was conducted on genomic DNA from the 
tumour sample. The heights of the raw spectral peaks were quantified, and 

the mutant allele percentage was determined using the default settings of 
the MassARRAY Typer 4.0 Analyzer. 
�
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Primers were designed using Primer3 with default settings to limit the 
amplicon length to 150–200 bps. Each primer was shown to amplify a 
unique site in the genome via in�silico PCR. qPCR experiments were con�
ducted using MaximaTM SYBR Green qPCR Master Mix in triplicate 
reactions according to the product manual. The reactions were amplified on 
a BioRad CFX96TM real�time system. The resultant crossing thresholds 
(Ct) were analysed using the SSCt method. Two DNA templates derived 
from the blood of two healthy female donors were adopted as the controls 
to calibrate the SSCt values in the experiments. We assumed that all q�
PCR segments were diploid for the DNA templates from the healthy do�
nors. 

The false positives were identified using the formula: 

θ2min
2,1

>−
=


�������������
�

�
, where ����������   

was the estimated copy number using read depths based on deep WGS, low 
WGS, or RAD sequencing data, and qPCR was the value obtained in two 
qPCR validations. The threshold θ was defined as the maximum distance 
between the estimated copy numbers across multiple sequencing strategies 
and the validated copy numbers via qPCR in the non�CNA segments.  
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We applied RAD sequencing on a hepatocellular carcinoma (HCC) 
sample to screen for significant copy number aberrations during 
tumourigenesis with EcoRI enzyme. Single�end reads of 100 bps 
were obtained and mapped to the densely packed reference, con�
sisting of groups of 100 bps genomic sequences flanking the re�
striction sites. 96.4% of the expected restriction sites were covered 
by real reads. The distance spanned by 80% of the neighbouring 
pairs of EcoRI restriction sites was within the range of 1 kb to 10 
kb. Ideally, the read counts of pairs of 5’ directional and 3’ direc�
tional genomic fragments that result from enzymatic digestion 
should be equal if there were no CNA breakpoints flanking the 
restriction sites. Therefore a filtering system was used to efficiently 
eliminate partial sequencing biases that would negatively impact 
the CNA analysis. We considered the restriction sites where the 
ratio of read counts between the two adjacent fragments was less 
than 1.5 to be valid for subsequent analysis. As a result of this 
filtering step, 519,656 valid RAD restriction sites were identified 
among a total of 778,114 sites obtained by EcoRI digestion, and 
these were dispersed across the whole genome.  

A total of 20X whole�genome sequencing data and 56X exo�
me capture sequencing data were simultaneously generated from 
the same HCC sample as well as 80X RAD sequencing data. The 
data from the different resequencing strategies provided an oppor�
tunity to conduct a comparative study of their utility in CNA anal�
ysis. We took advantage of the read depth and MAF measurements 
for each chromosomal locus to delineate the CNA profiles from 
deep WGS, low WGS, exome sequencing, and RAD sequencing 
data. The CNA profiles composed of read depth profiles and MAF 
profiles were described in Figure 1. The snapshots of the read 
depth and MAF profiles provided an intuitive overview and visible 
comparison of CNA estimation across the different sequencing 
strategies. 
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0������ Overall read depth and minor allele frequency (MAF) profiles in an 
HCC sample across different resequencing strategies. In the read depth 
profiles, each locus is represented by the average read count and calibrated 
by the respective median value. 10 consecutive restriction sites were treated 
as a unit. In MAF profiles, each locus represents the regionally averaged 
frequencies of 5 heterozygous sites identified by RAD and exome sequenc�
ing and 100 heterozygous sites identified by WGS. 
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Intuitively, we would achieve high accuracy in CNA detection if 
the scatter diagram was compact and the edges of the CNA seg�
ments were sharp. Here, we applied statistical and experimental 
validations to precisely evaluate and compare the read depth and 
MAF measurements obtained from the resequencing data. The first 
statistic applied was the windowed coefficient of variation, the 
mean value of which represents the dispersion of the read depth 
profile across each chromosome. Another statistic applied was the 
absolute difference of Gaussians (ADOG) function, which is re�
garded as an indicator of the sharpness of the segment boundary at 
the CNA breakpoint. Experimentally, the allele frequencies of 58 
randomly selected heterozygous sites were validated via Sequenom 
genotyping to evaluate the accuracy of the MAF estimation made 
on the basis of the sequencing data.  

The results of the comparisons are described in Figure 2. We 
balanced the datasets of RAD�seq in the total number of reads by 
randomly sampling reads in the experiments when comparing with 
exome sequencing and WGS data. The raw data and the balanced 
datasets supporting the subplots shown in Figure 2 are summarised 
in Supplementary Tables S1, S2 and S3. In Figures 2A and 2B, 
box�plots of two statistics measured the dispersion of the segments 
and the sharpness of the breakpoints in the read depth profiles. The 
mean values of the windowed coefficient of variation revealed that 
the datasets provided by both the RAD sequencing and deep WGS 
strategies had lower dispersion in their read depth profiles than was 
found in data generated by the low WGS strategy (Figure 2A). 
RAD sequencing was found to be the most effective strategy for 

obtaining sharpened edges when integer values of the absolute 
difference between two probability distributions of read depth 
flanking 16 common breakpoints were measured, even when total 
coverage of reads was reduced to a low level (Figure 2B). The data 
indicated that exome sequencing provided insufficient measure�
ment of the required variables (Figure 2A and 2B). The percentile 
plot shown in Figure 2C depicts the deviation of the estimated 
allele frequency values from the corresponding frequencies ob�
tained by independent genotyping analysis for 58 heterozygous 
sites. RAD sequencing provided over 60,000 heterozygous sites 
(corresponding to 6 percent of the sites characterised by deep WGS) 
where minor allele frequencies were scored for CNA analysis. The 
results of the genotyping analysis demonstrated that the estimated 
allele frequencies of approximately 70% of the validated heterozy�
gous sites identified by 80X RAD sequencing were within the error 
margin of the Sequenom genotyping system. The percentage did 
not reduce too much when RAD reads were sampled to be 50X and 
20X. Therefore, sufficient evidence supports the conclusion that 
RAD sequencing gave a precise measurement of read depth and 
minor allele frequency and achieved a comparable result to that of 
the deep WGS strategy for CNA analysis. 

0���� �� Comparisons of the performance of read depth and minor allele 
frequency�based estimation of CNAs from datasets of RAD�seq, WGS, and 
exome sequencing. 80X RAD�seq was comparable with low coverage 
WGS with the same number of reads. 50X RAD�seq was balanced dataset 
equal to exome sequencing in total number of reads. And 20X RAD�seq 
was also compared with the same coverage of deep WGS. A. A box�plot of 
the 10 Mb windowed coefficient of variation measuring the dispersion of 
segments in the read depth profiles; B. A box�plot of the integral values of 
the ADOG function, reflecting the visibility and sharpness of the edges of 
16 common CNA breakpoints; C. A percentile plot of the deviations away 
from the allele frequencies of 58 heterozygous sites measured independent�
ly via Sequenom analysis. The black dashed line indicates the error margin 
of the Sequenom genotyping system. 
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CNAs in the HCC sample that were not situated within the cen�
tromeric or telomeric regions were surveyed. For the 80X RAD 
sequencing dataset, a total of 36 CNAs were detected from the read 
depth profile, of which 30 (approximately 83.3%) were confirmed 
by the MAFs (Table 1, Supplementary Table S4). We trimmed the 
raw reads of 80X RAD sequencing to a length of 35 bps and sur�
veyed the CNAs based on the trimmed data. 32 of the 37 CNA 
segments were overlapped with the 36 segments identified from 
the original raw data (Supplementary Table S5). Moreover, RAD�
seq reached a high level of convergence on CNA calling in 80X, 
50X and 20X reads (Supplementary Table S9).The RAD sequenc�
ing strategy was therefore robust for CNA identification.  

The CNAs identified from WGS data were also summarized 
in Table 1 and Supplementary Table S4 for comparison. The exist�
ing CNA calls previously identified using WGS mate�pairs (>3 kb 
library insert size) and read depth profiles (Tao ������, 2011) were 
all detected by RAD sequencing. The confirmed CNAs with a 
length of more than 2 Mb were consistent across the RAD se�
quencing and deep WGS strategies. As shown by the Venn dia�
gram in Figure 3A, 20 of the CNA regions overlapped across the 
different sequencing strategies. 

However, we also noted that many CNAs were specific to 
certain sequencing strategies, and low� or high�WGS data contrib�
uted 2.5�fold more CNAs, of which less than half were supported 
by their MAF profiles. Therefore, we performed a simulated analy�
sis and experimental validation to assess the CNA pools that were 
specific to particular sequencing strategies. Simulated WGS data 
from the human genome NCBI36/hg18 assembly exhibited many 
medium�sized spanning regions that were subject to abnormal 
mappability, which would introduce false�positive CNAs. The data 
shown in Table 1 revealed that in deep WGS, 11 of 33 CNAs (and 
6 of 13 double�confirmed CNAs) less than 1 Mb spanned regions 
that were determined to be subject to abnormal mappability. In 
contrast, when the RAD sequencing strategy was used, in which 
subregions of the human genome were used as the reference and a 
minimum of mismatched or multiple hits occurred, the mappability 
of the targeted genomic regions had less influence on the precise 

identification of CNAs. Almost all of the 36 CNAs detected in the 
RAD sequencing data were identified in spanning regions that 
were not subject to abnormal mappability. Experimentally, we 
randomly selected targets from the pool where the CNAs with 
distinct copy numbers estimated across different sequencing strat�
egies. qPCR verification was performed in the tumour sample us�
ing blood samples from two normal adults as controls. Three non�
CNA regions that were supported by both their read depths and 
their minor allele frequencies from all of the sequencing strategies 
were also validated to identify and evaluate the false positives in 
the estimated copy numbers. The differences between the estimat�
ed copy numbers and the qPCR values are shown in Figure 3B. 
The raw data supporting the subplot are summarised in Supple�
mentary Table S6. Using the three non�CNA segments as controls, 
the marked outliers represent the false positives in the different 
sequencing strategies (Figure 3B). The qPCR results indicate that 
RAD sequencing achieved an 89.4% (17 out of 19) validation rate 
and that there were approximately 50% or 75% false positives 
derived from deep� or low�WGS, respectively.  

Even for the overlapping CNAs shown in the Venn diagram 
(Figure 3A), the different sequencing strategies estimated the copy 
numbers with varying degrees of precision. For example, there was 
an interesting high�copy duplication region located at chr11q. The 
copy number of this region was determined to be 5.21 via qPCR 
and was estimated as 3.93, 4,54, and 3.15 from deep�WGS, RAD, 
and low�WGS data, respectively. RAD sequencing inferred more 
accurate copy numbers in this ultra�high amplification region.  
�
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The genomes of tumour cells experience enormous CNA mutations. 
Unlike diploid genomic regions, the relative ratio of two parental 
copies will not be equal to 1:1 under the selection pressures for 
clonal expansion in a tumour. This has led to the conclusion that 
CNA segments with uneven amplification of the two parental cop�
ies have functional importance that is strongly associated with 
tumourigenesis (Tao ������, 2011; Nguyen ������, 2006). Thus, the 
refined calculation of allele�specific copy numbers would be mean�
ingful following the accurate identification of CNA segments.  

0�������A. A Venn diagram of detected CNAs across different sequencing strategies. B. qPCR validation results for CNAs. A total of 22 segments were veri�
fied, including three non�CNA regions as controls and 19 pending CNA regions. Two primers were designed for each CNA segment and the qPCR values 
for the two primers were marked with “+” or “x”, respectively. The segments supported by two qPCR primers with similar qPCR values were retained. The 
copy numbers estimated from deep WGS, low WGS and RAD sequencing data are represented by circles, triangles and diamonds, respectively. Outliers 
confirmed as being false positives were filled in a solid style.�
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3�!	
� ��Identified and confirmed CNA segments. Simulated deep WGS 
data exhibited medium�size spanning regions subject to abnormal mappa�
bility. The numbers of CNAs located in these regions are shown. 

 
It is the minor allele frequency that distinguishes the uneven 

copy numbers of the parental alleles. Based on MAF data from 
RAD sequencing, we confirmed a total of 30 CNA regions as be�
ing under allele selection where the corresponding MAF was far 
from the baseline of 0.5 (Table 1 and Supplementary Table S4). A 
chr5q deletion with a MAF of 0.28 and a 1.5�fold read depth re�
duction was one such important CNA identified, and this CNA is 
known to act as a driver of tumourigenesis. First, the deleted allele 
of the chr5q deletion forms a C5orf51�CPEB4 fusion gene, which 
has been validated by PCR on cDNA(Tao ������, 2011). Second, a 
tumour�driving somatic nonsynonymous mutation in cyclin G1 
(CCNG1), which is a target of P53, was in the region spanned by 
chr5q, but was not located in the deleted allele of chr5q. Therefore, 
uneven loss of the parental allele copies results in the gain of a new 
fusion gene accompanied by the driver mutation CCNG1 and 
therefore promotes the selection of cells for clonal outgrowth in the 
tumour. 

Genetic instability transforms the genome from its diploid 
state to a chaotic karyotype. Complex patterns of genomic archi�
tecture indicate mixed temporal sequences of rearrangements. Un�
locking the nature and mechanisms of the CNA events that occur 
will give us valuable insights into the mechanisms of tumourigene�
sis. MAFs are able to identify “hidden” CNA events and track the 
history of CNA occurrences that cannot be resolved by read depth 
profiles alone. For example, there was an interesting observation at 
chr6q where a complex genomic composition existed. We divided 
the chr6q region into three segments, referred to as segment I, 
segment II, and segment III (Figure 4A). The copy number of 
segment II was at the baseline, while segments I and II had 0.75�
fold and 1.5�fold copy numbers relative to the baseline, respective�
ly. Outwardly, the read depth profile indicated two separate seg�
ments with abnormal copy numbers in the chr6q region where two 
CNA events occurred independently. Correspondingly, segment I, 
segment II and segment III had average minor allele frequencies of 
0.28, 0.20 and 0.38, respectively, following MAF correction under 
the rule that the MAF of the baseline should be 0.5 (Figure 4B). 
The MAF data suggested an inconsistent fact, namely, that the 
frequency deviated strongly from the 0.5 ratio in segment II where 

the copy number was at the baseline. All of the patterns of two�
component CNA events occurring in chr6q region were examined 
and rejected because two CNA events could not explain how the 
values of both the copy number and the MAF had arisen (Figure 
4C). The data suggested that there were at least three sequential 
non�separable CNA events in the chr6q region. The most likely 
explanation is that the tumour genome has a tetraploid baseline, a 
deletion of one allele copy in segments I and II accompanied by a 
duplication of another allele copy in segments II and III, and an 
aneuploid duplication in segment III, which leads to the complex 
genomic composition of chr6q. 

0������ Disclosing the “hidden” CNA events at chr6q by integrating MAFs 
with read depth information. A. A partial, enlarged view of the read depth 
and MAF profiles for the chr6p CNA region, together with a definition of 
the different segments analysed. B. The corrected minor allele frequencies 
and the ratios of read depth for each segment. C. Description of the possi�
ble CNA patterns. All of the patterns involving two�component CNA 
events failed to explain the distinct values of read depth ratio and MAF 
observed for the three segments. An assembly consisting of three CNA 
events is given as a potential explanation of the origin of the genomic var�
iation observed at chr6q. 

 
�#��&��#%$�

Array is a comprehensive and commercial method for CNV calling. 
However, Xi R. et al. demonstrated that the copy ratios given by 
sequencing data are more accurate than that given by array plat�
forms (Xi ������, 2011). And our in�house data on MCF7 cell lines 
also showed direct plots in which array was less sensitive than 
WGS to some segments with copy number alterations (Supplemen�
tary Figure S3, unpublished data). We re�factored WGS into array�

 
Size of 
CNAs 

All the CNAs regions 
CNAs regions under 

abberated mappability 

Deep 
WGS 

Low 
WGS 

RAD 
Deep 
WGS 

Low 
WGS 

RAD 

CNAs 
detected 
from 
coverage 
profile 

[0,1M] 33 35 9 11 7 1 
(1M,2M] 12 18 1 1 3 0 

>2M 38 53 26 3 2 1 

Total 83 106 36 15 12 2 

Double�
con�
firmed 
CNAs by 
MAFs 

[0,1M] 13 3 8 6 1 0 
(1M,2M] 4 5 1 0 0 0 

>2M 26 25 21 2 0 1 

Total 43 33 30 8 1 1 
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type format in essence and proposed a strategy of RAD sequencing 
aiming to combine the advantage of array with sequencing for 
CNA analysis. In summary, RAD sequencing has its unique char�
acteristics. It reduces the mapping errors and noises in WGS. At 
the same time, it formats the fluorescence intensity in array to 
numbers of reads, as digital PCR was derived from qPCR. High 
noise�signal ratio and spatial biases in arrays are avoided. RAD 
sequencing as well as other NGS could detect multi�copy amplifi�
cation, which arrays were not good at due to saturation of probes, 
and then give an estimation on copy number in a broader range for 
a chromosomal region. In addition, the restricted enzyme is flexi�
ble to alter the density of restriction sites without an upper limit but 
the density of SNP array is limited with the number of all hetero�
zygous sites. It is also worth to highlighting that RAD sequencing 
is efficient without customizing specific probes of arrays for CNA 
analysis on new species.  

However, we applied the RAD sequencing approach on an 
HCC tumor as an example to interpret the effectiveness of CNA 
calling and recognize there are some limits for the method. Firstly, 
the size of CNA captured with an RAD will depend heavily on the 
density of restriction sites. The EcoRI enzyme, with its 6� nucleo�
tide recognition sequence, cut the genome into fragments within 
the range of 1 kb to 10 kb. As a result of treating 10 consecutive 
restriction sites as a unit, the valid resolution of CNAs was limited 
to approximately 150 kb. Flexibly, an approach was taken for the 
selection of an alternative enzyme to ensure the controllable reso�
lution of CNA segments. Supplementary Figure S2 showed the 
length distributions of restriction fragments for enzymes with dif�
ferent recognition sequences. For enzymes with 4� or 5�nucleotide 
recognition sites, the distance spanned by pairs of neighbouring 
restriction sites was shorter and the achieved CNA resolution 
would reach the 10 kb level. The use of multiple enzymes to co�
digest the genomic DNA would, therefore, be a possible strategy 
for increasing the sensitivity of CNA detection by RAD sequenc�
ing. Secondly, we did a direct comparison on the cost between 
RAD sequencing and SNP array. The cost of RAD sequencing is 
higher than that of arrays, although it is competitive with other 
sequencing methods. We calculated the cost of 50X RAD sequenc�
ing with ~1.8M restriction sites (co�digested by two enzymes) and 
100bp�length reads (Supplementary Table S7). It is 1.5 times of 
that of SNP 6.0.  

Our deep WGS data were mixed with the reads generated at 
an earlier stage from two sequencing platforms, SOLiD and Solexa. 
We called the CNAs using the same pipeline for the SOLiD reads 
and the Solexa reads independently to evaluate the consistency 
across platforms. 894 Mb of the 1150 Mb CNA regions identified 
in the SOLiD data overlapped with the 1158 Mb CNA regions 
identified in the Solexa data (Supplementary Table S8). In addition, 
the sequencing quality was reproducible across the Solexa and 
SOLiD platforms (Tao ��� ���, 2011; Zhou ��� ���, 2011). Deep se�
quencing data from the Solexa platform would admittedly provide 
a superior dataset, but the mixture of reads from two platforms had 
few negative effects on CNA determination. Meanwhile, although 
it provides a powerful dataset, deep WGS is costly and is associat�
ed with a heavy computational and storage load. In fact, deep 

WGS was not ideally perfect for CNA analysis as we expected. 
The number of spanning regions that were subject to abnormal 
mappability was one of the negative factors that caused inaccurate 
estimation of read depth and MAFs. In the simulated deep WGS 
data, approximately 2.97% (85.2 Mb of 2865.4 Mb) of the regions 
of the diploid genome had mapped read counts that were outside 
the range of 1.2� to 0.8�fold of the baseline. These regions in�
creased the noise in the genomic variability analysis and increased 
the number of false�positive CNAs.  

The use of MAF profiles provided a multitude of benefits in 
our study as follows: (1) MAF profiles confirmed the CNAs identi�
fied on the basis of read depth profiles; (2) they allowed a refined 
calculation of the allele�specific copy number and defined imbal�
anced parental alleles and driver CNAs that may be under selection 
for clonal expansion in tumourigenesis; and (3) the precise estima�
tion of frequencies enabled the resolution of CNA events in com�
plex genomic variations. These benefits demonstrate that the allele 
frequency profile of heterozygous sites is a wonderful complement 
to read depth for CNA analysis with sequencing data. But suitable 
and sensitive statistical approaches incorporating read depths and 
allele frequencies are required to be developped. We decoded the 
CNA composition in an example of a complex genomic region at 
Chr6q by integrating MAF and read depth information. Notably, 
Carter et.al have recently quantified the absolute copy numbers of 
chromosomes and tumour purity directly by analysis of somatic 
DNA alterations (S. L. Carter <i>et al.</i>, 2012). However, ef�
forts are needed to build a mathematical inference framework for 
deep analysis of CNAs, not only to determine the nature and 
mechanism of CNA events occurring in complex genomic regions 
but also to infer tumour purity and actual DNA ploidy. 
�
�%$�+&�#%$��
CNA is an important type of genetic mutation associated with dis�
ease. Current strategies to investigate the CNA profile can be clas�
sified into two major categories: the nucleotide probe hybridiza�
tion�based strategies and the sequencing�based strategies. The 
latter take advantage of precise information regarding read depth, 
read content, and allele frequencies and are therefore more com�
prehensive in their determination of copy numbers. However, the 
amount of sequencing data, the PCR amplification efficiency, the 
GC density, and the mappability of raw reads introduce complexi�
ties that can interfere with high�quality CNA analysis. Here, a 
comparison among deep WGS, low WGS, exome sequencing, and 
RAD sequencing strategies was performed.  

The RAD sequencing strategy took full advantage of its pre�
cise measurement of allele frequency and read depth to make am�
plification and deletion calls from sequencing data as effectively as 
deep WGS. Importantly, two characteristics of RAD sequencing 
should be emphasized. First, the reads were mapped to a small 
subset of the whole genome, which was composed of flanking 
regions adjacent to the restriction sites. This yielded a minimum of 
mismatched or multiple�mapping hits and resulted in high quality 
mapping of reads in general. Second, the 5’ directional and 3’ di�
rectional sequences adjacent to the restriction sites were simulta�
neously sequenced because of the employment of a palindromic 
enzyme. This enabled us to introduce a filtering strategy, namely, 
that there should be no significant disparity between the read 
counts of the upstream and downstream sequences adjacent to the 
restriction sites. In this way, sequencing biases, such as unbalanced 
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amplifications, were significantly reduced. In RAD sequencing, 
regionally averaged minor allele frequencies (MAFs) at heterozy�
gous sites, in addition to the read depth profile, offered reliable 
estimation of the copy numbers. A precise minor allele frequency 
was an essential element, not only for the refined calculation of 
allele–specific copy numbers but also in decoding multiple CNA 
patterns in complex genomic segments. 

Taken together, we focused on the enzyme digestion�targeted 
sequencing technique, RAD sequencing, and have demonstrated 
that it is a new method for the characterization of CNAs that pro�
vides reliable data for the inference of genomic copy numbers. It 
appears that there is a great potential for the application of RAD 
sequencing to a variety of areas of research. In population evolu�
tion research and GWAS studies especially, extensive characteriza�
tion of CNAs in numerous individuals is required to define the 
genetic variations among populations. 
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