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SUMMARY

Diminishedmitochondrial oxidative phosphory-

lation and aerobic capacity are associated with

reduced longevity. We tested whether resvera-

trol (RSV), which is known to extend lifespan,

impacts mitochondrial function and metabolic

homeostasis. Treatment of mice with RSV

significantly increased their aerobic capacity,

as evidenced by their increased running time

and consumption of oxygen in muscle fibers.

RSV’s effectswere associatedwith an induction

of genes for oxidative phosphorylation and

mitochondrial biogenesis and were largely ex-

plained by an RSV-mediated decrease in PGC-

1a acetylation and an increase in PGC-1a ac-

tivity. This mechanism is consistent with RSV

being a known activator of the protein deacety-

lase, SIRT1, and by the lack of effect of RSV in

SIRT1�/� MEFs. Importantly, RSV treatment

protected mice against diet-induced-obesity

and insulin resistance. These pharmacological

effects of RSV combined with the association

of three Sirt1 SNPs and energy homeostasis in

Finnish subjects implicates SIRT1 as a key reg-

ulator of energy and metabolic homeostasis.

INTRODUCTION

Mitochondria are the principal energy sources of the cell

that convert nutrients into energy through cellular respira-

tion (Wallace, 2005). Compromised mitochondrial func-

tion has been linked to numerous diseases, including

those of the metabolic and cardiovascular systems (Pe-

tersen et al., 2003). The genetic basis of such a tight link

in the rat was illustrated by the cosegregation of cardio-

vascular and metabolic risk factors with low aerobic ca-

pacity and reduced muscle expression of genes required

for mitochondrial biogenesis and oxidative phosphoryla-

tion (OXPHOS) (Wisloff et al., 2005). In humans, insulin re-

sistance in the skeletal muscle has been associated with

a lower ratio of oxidative type 1 to type 2 glycolytic type

muscle fibers, decreased mitochondrial oxidative capac-

ity and ATP synthesis, and, finally, decreased expression

of genes that control mitochondrial activity (Mootha et al.,

2003, 2004; Patti et al., 2003; Petersen et al., 2003). One

gene whose decreased expression is consistently impli-

cated in the human or animal diabetic muscle is the perox-

isome proliferator-activated receptor g coactivator, PGC-

1a (Mootha et al., 2004; Patti et al., 2003; Sparks et al.,

2005). PGC-1a is a coactivator with pleiotropic functions

(Knutti and Kralli, 2001; Lin et al., 2005). Most importantly,

PGC-1a controls mitochondrial biogenesis and function,

which in the muscle can contribute to fiber-type switching

(Lin et al., 2002a) and, in the brown adipose tissue (BAT),

to adaptive thermogenesis (Puigserver et al., 1998).

Recently SIRT1 has been shown to function together

with PGC-1a to promote adaptation to caloric restriction

(CR) by regulating the genetic programs for gluconeogen-

esis and glycolysis in the liver (Rodgers et al., 2005). SIRT1

is oneof sevenmammalian homologsof Sir2 that catalyzes

NAD+-dependent protein deacetylation, yielding nicotin-

amide and O-acetyl-ADP-ribose (Blander and Guarente,

2004). Originally described as a factor regulating longevity,

apoptosis and DNA repair (Blander and Guarente, 2004;

Sinclair, 2005), SIRT1 also facilitates the conversion of

changes in the nutritional status, which it senses via

NAD+ levels, into modulation of cellular metabolism

(Brunet et al., 2004; Lin et al., 2002b; Picard et al., 2004;
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Rodgers et al., 2005). SIRT1 physically interacts with and

deacetylates PGC-1a at multiple lysine sites, conse-

quently increasingPGC-1a activity leading to the induction

of liver gluconeogenic gene transcription (Rodgers et al.,

2005). Given the role of SIRT1 as amediator of CR and lon-

gevity and the central role for reactive oxygen species

(ROS), mainly produced as a consequence of mitochon-

drial functioning in promoting aging, it is plausible that

PGC-1a and SIRT1 functions converge in tissues beyond

the liver that have a high level of mitochondrial activity,

such as the muscle and BAT. Since such a convergence

could potentially impact on metabolic diseases, we

addressed our hypothesis not in the context of CR but

under conditions of caloric excess using the specific

SIRT1 activator, resveratrol (RSV) (Borra et al., 2005; Ho-

witz et al., 2003).

RSV is a natural polyphenolic compoundmainly found in

the skin of grapes and iswell known for its phytoestrogenic

and antioxidant properties (Baur and Sinclair, 2006). It has

been shown to significantly increase SIRT1 activity

through an allosteric interaction, resulting in the increase

of SIRT1 affinity for both NAD+ and the acetylated sub-

strate (Howitz et al., 2003). These findings are consistent

with the fact that in various species, RSV treatmentmimics

Sir2-dependent lifespan extension during CR (Howitz

et al., 2003; Lin et al., 2000; Rogina and Helfand, 2004).

In this study we tested whether RSV, through increasing

SIRT1 activity, could modulate PGC-1a functions in vivo

and ultimately impact on the regulation of energy homeo-

stasis. Our data reveal that RSV potently induces mito-

chondrial activity, through activating PGC-1a, as evi-

denced by the increase in oxidative type-muscle fibers,

enhanced resistance to muscle fatigue, and increased

tolerance to cold, all PGC-1a-dependent effects. Impor-

tantly, these effects, induced by RSV, rendered the ani-

mals resistant to diet-induced obesity and insulin resis-

tance. In support of the importance of SIRT1 in the

control of energy homeostasis, we also report a significant

association between three single-nucleotide polymor-

phisms (SNPs) in the human Sirt1 gene and energy ho-

meostasis, extending the impact of our animal studies to

human pathophysiology.

RESULTS

Metabolic Consequence of RSV in Diet-Induced

Obesity

Themetabolic effect of RSVwas initially evaluated in a co-

hort of male C57Bl/6J mice that were given a dose of 200

or 400 mg/kg/day (mpk) of RSV administered in either

a chowdiet or high fat (HF) diet for 15weeks.With this pro-

tocol, the plasma level of RSV was dose-related and

ranged from 10–120 ng/ml. Under chow-fed conditions,

RSV-treatedmice tended to gain less weight as compared

to controls (Figure 1A). However, this effect became sig-

nificant when the animals were challenged with an HF

diet, such that RSV-treated, HF-fed mice weighed almost

the same as the chow-fed mice (Figure 1B). This de-

creased body mass was accounted for by a decrease in

fat as illustrated by dual X-ray absorptiometry (Figure 1B)

andwas also reflected in themass of the different white fat

pads (Figure 1C). Morphological analysis of epididymal

white adipose tissue (WAT) sections by hematoxylin and

eosin (HE) staining also showed smaller adipocytes

upon RSV treatement (Figure S1). These beneficial effects

of RSV on body weight and fat mass were not due to de-

creased food intake, as the amount of kcal of food con-

sumed per mouse over a 24 hr period was unchanged

(Figure 1D). RSV, at the dose given, did not induce hepatic

toxicity, since the serum levels of alanine aminotransfer-

ase and aspartate aminotransferase (data not shown)

were unchanged, as was the liver histo-morphology (Fig-

ure S1). In addition, stool composition, coat maintenance,

and water intake (data not shown) were unaffected, indi-

cating that overall, RSV was well tolerated by the animals.

Finally, fecal lipid kcal content was minimally affected by

RSV treatment, and greater than 98% of all dietary-de-

rived lipid was absorbed in both groups (data not shown).

The critical parameters contributing to body-weight

maintenance include caloric intake and energy homeosta-

sis (Lowell and Spiegelman, 2000). As caloric intake is un-

affected by RSV (Figure 1D), we assessed the effect of this

compound on energy expenditure (EE) by indirect calorim-

etry. Basal EE, as measured by oxygen (O2) consumption,

was significantly increased in HF-fed mice treated with

RSV (Figure 1E), but their respiratory quotient (RQ) was

not changed (data not shown). To assess the effect of

RSV on the capacity for adaptive thermogenesis, we per-

formed a cold test. RSV enhanced this capacity, since it

maintained the body temperature higher as compared to

that of nontreated animals (Figure 1F). In the mouse, the

major contributor to the production of heat is the BAT,

and morphometric analysis of the BAT mitochondria, by

electronmicroscopy, revealed clearly larger mitochondrial

structures attributed to an increased presence of cristae in

RSV-treated mice as compared to that of HF-fed animals

(Figure 2A). This amplification of the mitochondria was re-

flected both in the quantification of mitochondrial size

(Figure 2A, right panel) and mitochondrial DNA content

(mtDNA, Figure 2D). Consistent with enhanced mitochon-

drial activity, a marked decrease in the lipid-droplet size

was also noted.

RSV Increases the Aerobic Capacity of the Muscle

In the adult human, little BAT is present, and it is mainly the

skeletal muscle that possesses the mitochondrial capac-

ity for EE. The changes in the muscle mitochondrial mor-

phology, however, paralleled those observed in the BAT

of RSV-treated mice (Figure 2B). Whereas the oxidative

fibers of the gastrocnemius were unaffected, the nonoxi-

dative fibers in RSV-treated mice had larger and denser

mitochondria aggregated between adjacent myofibrils.

Mitochondrial expansion was evidenced by increased mi-

tochondrial size (Figure 2B, right panel) and mtDNA con-

tent (Figure 2D). Histological sections of muscle stained

for the presence of the mitochondrial enzyme, succinate
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dehydrogenase (SDH, Figure 2C), and the increase in

citrate synthase activity in muscle homogenates, further-

more indicates that RSV enhanced mitochondrial enzy-

matic activity (Figure 3A). Finally, in the isolated nonoxi-

dative muscle fibers of RSV-treated mice, there was a

significantly higher maximum VO2 rate, indeed suggesting

an increased oxidative capacity (Figure 3B). The combina-

tion of the increased mitochondria size and density,

mtDNA content, SDH, and citrate synthase activities and

oxidative capacity is highly suggestive that RSV increases

the ratio of oxidative to nonoxidative type-muscle fibers.

Following the hypothesis that RSV induces a fiber-type

switch and knowing that oxidative type 1 fibers are associ-

atedwith an increased resistance tomuscle fatigue (Booth

et al., 2002), we evaluated the effect of RSV administration

in an endurance test. In HF-fed animals treated with RSV,

the distance run to exhaustionwas twice that of theHF-fed

controls (Figure 3C). To account for the potentially con-

founding significant weight difference between RSV-

treated and nontreated HF-fed mice, we redid the test

using RSV-treated and nontreated chow-fed mice, which

did not significantly differ in body weight (Figure 1A). The

RSV-treated mice, however, still outran the control

chow-fed mice by nearly double the distance (Figure 3C).

Thus, RSV treatment significantly increases the animal’s

resistance to muscle fatigue, consistent with increased

mitochondrial activity and the transformation of muscle

toward a slow type phenotype.

NoBehavioral Defects, but ImprovedMotor Function

in RSV-Treated Mice

Since it was reported that SIRT1 is required for increased

physical activity in response to CR (Chen et al., 2005), we

carefully investigated whether the RSV-mediated increase

in resistance to muscle fatigue was a result of a behavioral

response or was truly a metabolic consequence. We ini-

tially examined the effect of RSV on spontaneous activity

in mice by assessing their circadian activity. No significant

difference was observed between chow- and HF-fedmice

(data not shown). However, in RSV-treated HF-fed mice,

there was a significant decrease in ambulatory locomotor

activity as well as a tendency to decrease the number of

rears (Figure 4A). These observations indicated that the ef-

fect of RSV on EE and weight gain could not be explained

Figure 1. RSV Prevents Diet-Induced Obesity

C57Bl/6J mice were fed a chow diet (C) or high-fat diet (HF) alone or supplemented with RSV (400 mpk, R400) for 15 weeks.

(A) Evolution of body weight gain expressed as percentage of initial body weight.

(B) Body fat content expressed as percentage of total body mass as analyzed by DEXA.

(C) Weight of the WAT depots, expressed as percentage of total body weight.

(D) Average food intake expressed as kcal/mouse/day.

(E) EE as measured by changes in VO2 consumption in indirect calorimetry during 13 hr (time 0 is 7:00 p.m.). The mean areas under the curves (AUC)

are shown in the right side graph (n = 7).

(F) The evolution of the body temperature during a cold test (4�C for 6 hr). * = P < 0.05 and n = 10 animals/group unless stated otherwise. Values

represent means ± SEM.
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by an increase in spontaneous activity. In fact, the re-

duced level of activity in RSV-treated mice is in line with

the decrease in resting heart rate (Figure 4B). Cardiodetri-

mental effects are, however, not suspected due to the lack

of significant effect of RSV on blood pressure (Figure 4C),

various echocardiography parameters (data not shown),

PGC-1 activity (see below), and cardiac gene expression

(Figure S3).

To discount the potential of central nervous system

(CNS)-mediated behavioral effects and to determine the

effect of RSV treatment on other motor abilities, we evalu-

ated anxiety and sensorimotor function. No significant ef-

fectswere observedbetweenRSV-treated andnontreated

HF-fed mice on anxiety, as evaluated by open field (Fig-

ure 4D), light/dark box (Figure 4E), and elevated-

plus-maze tests (Figure 4F). The absence of a difference

between RSV-treated and nontreated HF-fed mice in

pain sensitivity, as measured in the hot-plate test (data

not shown), also discounted the possibility that fatigue re-

sistance might be due to altered pain sensitivity. Interest-

ingly, as compared to nontreated HF-fed mice, the RSV-

treated mice displayed increased muscle strength (Fig-

ure 4G) and markedly improved motor coordination and

traction force as revealed in the rotarod (Figure 4H) and

string tests (Figure 4I). These tests support the data

obtained in the exercise test and suggest that RSV may

improve neuromuscular function.

RSV Reprograms Muscle Gene Expression

To make the molecular connection between RSV treat-

ment and the apparent myofiber remodeling, we profiled

the expression of ±40,000 genes by microarray analysis.

As the coordination of muscle plasticity is a complex

event, composed of many small but cumulatively signifi-

cant changes, we used a gene-set enrichment analysis

(GSEA) to look for coordinate expression within treated

samples of a priori-defined groups of genes (Mootha

et al., 2003; Subramanian et al., 2005). Geneswere ranked

Figure 2. RSV Increases Mitochondrial Activity in the BAT and Muscle

(A and B) Transmission electronic microscopy (magnification of 20,000) image and corresponding quantification of mitochondria size in BAT (A) and

nonoxidative fibers of gastrocnemius muscle (B) from RSV-treated (HF+R400) and nontreated HF-fed animals. Arrows indicate the position of mito-

chondria (M) and lipid droplets (L), and the inset shows the schematic organization of muscle fiber anatomy. Quantification was performed on

2 animals/group and is expressed relative to HF controls.

(C) SDH staining of gastrocnemius and soleus muscle from RSV-treated and nontreated HF-fed animals.

(D) mtDNA copy number of gastrocnemius muscle, BAT, and liver from RSV-treated and nontreated HF-fed mice (n = 4 animals/group). Values rep-

resent means ± SEM.
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according to their correlation to RSV treatment, and then

the position of each gene-set member was identified,

and a maximum enrichment score (MES) for each gene

set was calculated. Amongst the top 30 gene sets, which

were significantly enriched in RSV-treated mice, were ri-

bosomal mRNA processing, striated muscle contraction,

electron transport chain, OXPHOS, and ATP synthesis

(Table S1). Three representative GSEA-scoring plots and

their corresponding heat maps are shown (Figure 5A). Of

particular note is their increase in gene expression under

RSV treatment. Individual genes in the enriched pathways

were related tomuscle contraction (e.g., troponins) as well

as enhancedoxidativemetabolic status, including compo-

nents of the respiratory apparatus (e.g., NDUFB8), oxida-

tive enzymes (e.g., CoxVa), and ATPases (e.g., ATP5G3).

These could provide a slow but stable, long-lasting supply

of ATP, which would explain the increased muscle endur-

ance associated with RSV. In addition, sets of genes sup-

porting organelle biogenesis such as those encoding

RNA-processing enzymes and ribosomal subunits were

also enriched (Figures 5 and S2). Thus, this global molec-

ular fingerprint of RSV identified coordinated changes in

the expression of groups of genes functionally involved

in mitochondrial biogenesis and function underpinning

the enhanced oxidative capacity of the muscle.

To further evaluate the hypothesis that mitochondrial

activity was affected by RSV treatment, we measured

the expression of PGC-1a and several of its targets by

Q-RT-PCR in gastrocnemius muscle. PGC-1a mRNA

was significantly induced upon RSV treatment, which

also translated into an increase in PGC-1a protein (Figures

5C and 5D). We also noted an increase in PGC-1b, which

has several overlapping functions with that of PGC-1a in

inducing genes related to OXPHOS (Lin et al., 2002c).

The estrogen-related receptor a (ERRa), which mediates

many of the downstream effects of activated PGC-1a on

mitochondrial function and is itself a target of PGC-1a

(Huss et al., 2002; Schreiber et al., 2003; Schreiber et al.,

2004; Tcherepanova et al., 2000), wasmarkedly increased

by RSV, as was the ERRa/PGC-1 target, nuclear respira-

tory factor-1 (NRF-1) (Mootha et al., 2004; Patti et al.,

2003). Mitochondrial transcription factor A (Tfam), a nu-

clear encoded mitochondrial transcription factor that is

indispensable for the expression of key mitochondrial-

encoded genes (Larsson et al., 1998) and a target of

NRF-1, was also increased. In addition to the transcription

Figure 3. Enhanced Oxidative Capacity and Endurance in RSV-Treated Mice

(A) Activity of the citrate synthase, as measured in homogenates of gastrocnemius fibers isolated from RSV-treated (HF + R400) and nontreated

HF-fed mice. N = 3 animals/group, and values are expressed relative to control.

(B) Maximum VO2 consumption in isolated gastrocnemius fibers measured ex vivo. N = 5 animals/group.

(C) The effect of RSV on endurance, as measured by an exercise test. Individual animal performances (graphs on the left) as well as the average dis-

tance run until exhaustion (graphs on the right) are presented for animals treated with HF or HF + R400 (top) or chow diet (C) or chow diet and RSV at

400 mpk (C + R400) (bottom). N = �8 animals/group. * = P < 0.05. Values represent means ± SEM.
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factors, an array of additional downstream targets of

PGC-1a (Lin et al., 2005), including genes involved in

fatty-acid oxidation (medium chain acyl-CoA dehydroge-

nase, MCAD), uncoupling, and protection against ROS

(uncoupling protein 3, UCP-3), and fiber-type markers

(myoglobin and troponin 1) were induced by RSV.

As predicted from the electron microscopy and the cold

test results, we noted a significant increase in gene ex-

pression in pathways related to energy homeostasis

(Figure S3A) in BAT. PGC-1a, peroxisome proliferator-ac-

tivated receptor a (PPARa), and UCP-1 mRNA levels were

all induced by RSV. Like ERRa, PPARa induces genes that

facilitate b-oxidation of fatty acids (Schoonjans et al.,

1997), and UCP-1 is largely responsible for the uncoupling

of respiration from ATP synthesis resulting in the produc-

tion of heat in the BAT (Ricquier, 2005). Interestingly, how-

ever, mitochondrial changes were not evident in the heart,

as reflected by a lack of changes in gene expression of

PGC-1a and related target genes (Figure S3B), which cor-

roborates the insignificant effects on heart physiology. We

also surveyed the liver and found no changes in expres-

sion of gluconeogenic genes but a tendency for increased

expression in genes related to OXPHOS (Figure S3B).

RSV Induces PGC-1a Activity through SIRT1

In spite of the RSV-mediated induction in PGC-1a mRNA

and protein expression (Figure 5D), PGC-1a can also be

regulated at the posttranslational level, as modifications,

such as acetylation, significantly impact on its activity

(Rodgers et al., 2005). Therefore, we compared PGC-1a

acetylation in gastrocnemius muscle, BAT, and heart be-

tweenmice that were fed an HF diet in the presence or ab-

sence of RSV (Figure 6A). In gastrocnemius muscle and

BAT, we observed that the ratio of acetylated nuclear

PGC-1a to total nuclear PGC-1a protein was significantly

decreased in RSV-treated mice, suggesting that PGC-1a

Figure 4. The Increase in Endurance and EE by RSV Is Not Explained by Increased Spontaneous Locomotor Activity or Altered

Behavior

C57Bl/6J mice were fed an HF diet or HF diet and RSV 400 mpk (HF + R400). N = 8–10 animals/group.

(A) Circadian activity, measured as the total ambulatory locomotor activity (top graph) and the number of rears (bottom graph). The mean AUC are

shown on the right.

(B and C) Heart rate as beats/min (B) and blood pressure in mm Hg (C).

(D–I) Behavior tests to evaluate mouse anxiety, including open field (D), light/dark box (E) and elevated-plus-maze (F), and sensorimotor function,

including grip strength (G), rotarod (H), and string test (I). * = P < 0.05. Values represent means ± SEM.
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activity was also increased (Figure 6A). In contrast, no

effect on PGC-1a acetylation was observed in heart of

the RSV-treated HF mice (Figure 6A), indicating a certain

tissue specificity in RSV’s effects.

To test whether RSV’s effects on mitochondrial func-

tion are mediated by SIRT1 and PGC-1a, we coinfected

C2C12 myotubes with an adenovirus expressing PGC-

1a, together with either a specific short hairpin RNA

(shRNA) directed against SIRT1 or a control shRNA. This

strategy effectively reduced endogenous SIRT1 levels

while still maintaining high PGC-1a expression (Figure 6B,

top panel). Importantly the knockdown of the SIRT1 pro-

tein largely blocked the RSV-induced increase in MCAD,

cytochrome C (CytC), and ERRa expression, (Figure 6B,

bottom panels). This experiment also demonstrated the

dependence of RSV’s effect on PGC-1a, since no signifi-

cant increases in mRNA expression of CytC, MCAD, or

ERRa were observed in RSV-treated C2C12 cells in the

absence of PGC-1a (Figure 6B).

To further consolidate our hypothesis that SIRT1 deace-

tylates and hence activates PGC-1a, we compared the ef-

ficacy of RSV to induce gene expression in cells infected

Figure 5. The Gene-Expression Profile of Skeletal Muscle from RSV-Treated Mice Is Enriched in Pathways Related to Mitochon-

drial Biogenesis and Function

(A) Gene-set enrichment analysis (GSEA) of gene-expression profile in gastrocnemiusmuscles isolated from HF-fed male C57Bl/6J mice treated with

or without RSV (400 mpk, HF + R400). N = 5 animals/group. Three plots are shown where the FDR was <10% for both oxidative phosphorylation

pathway and electron transport chain and <33% for striated muscle contraction. The top part of each plot shows the progression of the running en-

richment score and the maximum peak therein. The middle part shows the genes in the gene set as ‘‘hits’’ against the ranked list of genes. The lower

part shows the histogram for the ranked list of all genes in the expression data set. See Experimental Procedures and Results for more detailed

description.

(B) The corresponding heat maps show the expression values for the top subset of genes of each pathway, which contributes most to the enrichment

score in the five mice of each group. Results are transformed into colors, where red indicates a high and blue a low expression value.

(C) Relative mRNA expression levels of key genes related to mitochondrial function as measured by Q-RT-PCR in the gastrocnemius muscle of HF or

HF + R400 mice. N=5-6 animals/group. Data represent mRNA levels relative to cyclophilin and are given as means ± SEM.

(D) Quantification and representative western blot of PGC-1 protein in nuclear extracts from the gastrocnemiusmuscle of RSV treated and nontreated

HF fed animals. Values represent arbitrary density units ± SEM (n = 3 animals/group), and actin serves as loading control. * = P < 0.05.
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with an adenovirus that either encoded the wild-type (WT)

PGC-1a or the R13-PGC-1a protein in which 13 of the po-

tential lysine acetylation sites were mutated into arginine

(Rodgers et al., 2005) (Figure 6C). Since the capacity for

acetylation is impaired for the R13-PGC-1a protein, it

was no surprise that expression of the R13-PGC-1a mu-

tant alone induced the PGC-1a target genes, ERRa,

CytC, and MCAD, to a higher level as compared to WT

PGC-1a. Importantly, addition of RSV failed to further in-

duce the expression level of these PGC-1a target genes

in the R13-PGC-1a infected C2C12 cells (Figure 6C),

which is in sharp contrast to cells infected with WT

PGC-1a and consistent with the dependence of RSV on

SIRT1-mediated deacetylation of PGC-1a to activate

PGC-1a transcriptional programs.

Finally, we sought in vivo support for the dependency of

RSV effects on SIRT1 by using mouse embryonic fibro-

blasts (MEFs) isolated from SIRT1+/+ and SIRT�/� mice

(Chua et al., 2005). In contrast to WT MEFs, in SIRT1�/�

MEFs, RSV did not decrease PGC-1 acetylation (Fig-

ure 6D), and there was no significant effect of RSV on ex-

pression of CytC, MCAD, and PGC-1a (Figure 6E), results

entirely consistent with the crucial role of SIRT1 in mediat-

ing RSV’s activity. The demonstration that RSV treatment

results in deacetylation of PGC-1a and modulation of the

expression of PGC-1a target genes in the muscle and

Figure 6. Muscle PGC-1a Is a Molecular Target of RSV In Vivo

(A) Representative western blots and quantification showing the relative amount of acetylated versus total PGC-1 protein, for gastrocnemius muscle,

BAT, and heart. PGC-1 was immunoprecipitated (IP) from nuclear extracts and then immunoblotted with either an antiacetylated lysine antibody to

determine the extent of PGC-1 acetylation (Ac-Lys) or a PGC-1 antibody to determine the total amount of PGC-1. N > 3 animals/group.

(B andC) C2C12myotubes were coinfected with an adenovirus expressing either PGC-1a (Ad-PGC-1) or GFP and a SIRT1 shRNA or a control shRNA

or a PGC-1a acetylation mutant (Ad-R13). Following 24 hr incubation with DMSO or RSV (R, 50 mM), cells were harvested for protein and RNA ex-

traction. A representative western blot showing the protein expression levels of PGC-1 (wild-type or acetylation mutant) and SIRT1 in these cells

is shown. Tubulin was used as a loading control. The mRNA expression levels of ERRa, CytC, and MCAD were determined by Q-RT-PCR. Values

represent the mRNA levels relative to the housekeeping gene 36B4, * = P < 0.05.

(D) SIRT1�/� and SIRT+/+ MEFs were infected with Ad-PGC-1 and treated with DMSO or RSV (R 50 mM) for 24 hr. PGC-1 was immunoprecipitated

from lysates with a flag M2 antibody. Acetylated PGC-1 (Ac-Lys) was revealed by an antiacetylated-lysine antibody and total PGC-1 levels by an HA

antibody. A representative western blot is shown and the quantification of the ratio of acetylated to nonacetylated PGC-1, n = 2 animals/group.

(E) Gene-expression levels are as measured in SIRT1�/� and +/+MEFs following a 24 hr incubation with either DMSO or RSV (R, 50 mM). mRNA levels

are relative to the 36B4 gene, * = P < 0.05 (n = 3). n.d. = not detected. Values represent means ± SEM.
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BAT (Figure 6A), in combination with the absence of an ef-

fect of RSV on gene expression, when SIRT1 expression is

reduced or eliminated (Figures 6B and 6E) and/or when

the acetylation sites specifically targeted by SIRT1 were

mutated in PGC-1a (Figure 6C), is highly suggestive that

RSV relies to a large extent on SIRT1 activation and

PGC-1 deacetylation to achieve its effects on PGC-1a-

dependent gene expression in vivo.

Improved Insulin Sensitivity in RSV-Treated Mice

Since genomic profiling of human diabetic muscle re-

vealed a coordinated decrease in expression of genes re-

lated to OXPHOS (Mootha et al., 2003), we determined

whether the effects of RSV on mitochondrial metabolism

translated into changed insulin sensitivity. Although fast-

ing glucose levels were not altered by RSV, fasting insulin

levels were significantly reduced, suggesting an insulin

sensitization (Figure 7A). We thus performed a hyperinsuli-

nemic euglycemic clamp study in these mice. In line with

the fact that diet-induced obesity decreases insulin sensi-

tivity, a significant decrease in the glucose infusion rate

(GIR) was observed in HF compared to chow-fed mice

(Figure 7B). Importantly, however, the GIR in RSV-treated

HF mice was significantly higher as compared to HF con-

trol animals, indicating that RSV improves insulin sensitiv-

ity in a diet-induced obesity model (Figure 7B). No major

impact on blood lipid levels was observed after RSV

(Figure 7A). We also assessed the effects of RSV in a ge-

netic mouse model of diabesity, the KKAy mouse. KKAy

mice were treated with an HF diet without or with RSV

(at 400 mpk for 10 weeks). Although in this model RSV

did not significantly affect weight gain, glucose tolerance,

Figure 7. RSV Increases Insulin Sensitivity and the Association of the Sirt1 gene with Energy Expenditure in Humans

(A) Average glucose, insulin, and lipid levels in HF-fed C57Bl/6J mice treated with or without RSV (HF + R400) for 16 weeks. N = 8–10 animals/group.

(B) Evolution of the glucose infusion rate (GIR) during the hyperinsulinemic euglycemic clamp on C57Bl/6J mice treated with chow (C) or HF diet or

HF + R400. N = 4 animals/group. The average GIR at clamp is shown in the bar graph.

(C and D) Eight week-old male KKAy mice were treated with HF diet or HF diet plus RSV at a dose of 400 mpk (HF+R400) for 8 weeks. N = 5 animals/

group. OGTT was performed, and the AUCs are shown in the inset bar graph (C). Fasting (12 hr) and nonfasting plasma glucose in KKAy mice treated

with HF or HF + R400 (D). Values represent means ± SEM. * = P < 0.05.

(E) The association of SNPs of the Sirt1 gene with EE as measured in normal weight offspring of probands with type 2 diabetes (n = 123). *LBM, lean

body mass, ** EE, energy expenditure mean ± SD, p values adjusted for age, gender, and familial relationship.
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as assessed by an oral glucose tolerance test (OGTT,

2 g glucose/kg), was significantly improved by RSV (Fig-

ure 7C). This was paralleled by a significant decrease in

fasting glucose levels, suggesting that RSV possesses

intrinsic antidiabetic effects that are independent of its

effects on body weight (Figure 7D).

Genetic Variation in the Human Sirt1 Gene

Is Associated with EE

To determine whether common alleles in Sirt1 might con-

tribute to heritable phenotypic variation in EE in humans,

we investigated the effects of five genetic variants in the

Sirt1 gene on EE as profiled in a cohort of healthy, nor-

mal-weight (body mass index < 26.0 kg/m2), nondiabetic

offspring of type 2 diabetic patients (Ferrannini et al.,

1988). Three out of five SNPs tested (i.e., rs3740051 [pro-

moter A/G], rs2236319 [intron 3 A/G], and rs 2273773

[L332L C/T]) were significantly associated with whole

body EE as evaluated either during fasting or during a hy-

perinsulinemic clamp (Figure 7E). These data indicate that

in humans, Sirt1 genetic polymorphisms covary with the

degree of EE, which provides an independent genetic ar-

gument that bolsters the direct involvement of SIRT1 in

modulating EE that we uncovered by manipulating its

activity pharmacologically with RSV in mice.

DISCUSSION

Our data demonstrate that the SIRT1 activator, RSV,

induces PGC-1a activity by facilitating SIRT1-mediated

deacetylation. The effects of RSV on PGC-1a target

gene expression were dependent on the presence of the

WTPGC-1a protein andwere lost in caseswhere the acet-

ylation sites in PGC-1a that are targeted by SIRT1 were

mutated or when SIRT1 expression was disrupted in either

C2C12myotubes byRNAi or inMEFs isolated fromSIRT1-

deficient mice. The effects of RSV were seen in both mus-

cle and BAT and resulted in an increase in mitochondrial

function, which translated into an increase in EE, improved

aerobic capacity, and enhanced sensorimotor function.

Importantly, mice on an HF diet were consequently pro-

tected from the development of obesity and remained

insulin sensitive when they were treated with RSV. Our

observations therefore extend the function of the SIRT1-

PGC-1a axis beyond control of liver gluconeogenesis

(Rodgers et al., 2005) to adaptive thermogenesis in the

BAT and muscle function. Although most of our conclu-

sions are based on cellular studies and pharmacological

interventions in mice, the novel association between ge-

netic variations in the Sirt1 gene and energy homeostasis

in man reveals a significant place for our work in the con-

text of human pathophysiology.

In the BAT, RSV treatment induced striking mitochon-

drial morphological changes and also increased UCP-1

expression levels and thus poised the mitochondria for

uncoupling of respiration (Puigserver et al., 1998). This

effect is consistent with the observed increase in cold tol-

erance and goes a long way in explaining their increase in

EE and resistance to weight gain. Surprisingly, though, we

did not observe similar changes in mitochondrial bio-

genesis by RSV in the heart, despite the coexpression of

PGC-1a and SIRT1 (Figure S3). PGC-1a expression,

PGC-1a acetylation, and heart function were not altered

by RSV. As cardiac-specific PGC-1a overexpression in

mice ultimately results in cardiomyopathy and death (Leh-

man et al., 2000), the absence of an effect of RSV on mi-

tochondrial biogenesis in the heart is interesting. Although

in the liver, changes in expression of genes related to

OXPHOS showed a tendency to increase, other known

PGC-1 target genes related to gluconeogenesis were un-

affected by RSV. Therefore, we suspect that cell-specific

associations between PGC-1a and other transcription

factors or cofactors may exist to modulate tissue-specific

transcriptional consequences of RSV.

A striking feature of the myofiber is its ability to trans-

form and remodel in response to environmental demands

(Booth et al., 2002). The most notable is exercise training,

which transforms the metabolic status of the myofiber to

one of increased oxidative metabolism and switches the

fiber from one of a fast twitch type 2 to a slow twitch

type 1 (Booth et al., 2002). In this study, RSV treatment

of HF-fed mice induced a similar myofiber remodeling

but in the absence of increased physical activity. The my-

ofibers from RSV-treated mice were enriched in mito-

chondria, exhibited enhanced oxidative capacity, and dis-

played a higher resistance to fatigue because of the

concerted activation of a genetic program geared for aer-

obic metabolism. Although we were unable to prove that

these progressive changes in oxidative capacity by RSV

lasted long enough to induce a complete type 1 fiber

transformation, we did see advanced improvement in mo-

tor function, which is a component of the integrated phys-

iological response required to improve exercise perfor-

mance. Comparable changes in muscle fiber types have

been recapitulated in genetically engineered mouse

models that trigger calcium regulatory pathways (Wu

et al., 2002), mimic PPARb/d activation (Wang et al.,

2004), or enhance PGC-1a activity (Lin et al., 2002a).

The fact that RSV induces a muscle fiber type switch in

the absence of genetic engineering underscores its pow-

erful pharmacological activities. RSV could hence be

viewed as a performance-enhancing drug, which, in con-

trast to other pharmacological mediators, such as ana-

bolic steroids, improves performance by changing myo-

fiber specificity rather than by increasing muscle mass.

Different cells and tissues have distinct sensitivities and

requirements of mitochondrial function. Neurons appear

particularly vulnerable to mitochondrial dysfunction, as

testified by the many neurodegenerative diseases, includ-

ing Alzheimer’s and Huntington’s diseases, which have

been associated with abnormal mitochondrial activity

and dynamics (Chan, 2006). Interestingly, we noted a sig-

nificant improvement in motor coordination and traction

force, as well as enhanced aerobic performance, in RSV-

treatedmice, suggesting apotential beneficial neuronal ef-

fect of RSV. In the brain, PGC-1a deficiency in mice leads
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to certain behavioral abnormalities, including profound hy-

peractivity with neurodegeneration, reminiscent of Hun-

tington’s disease (Leone et al., 2005; Lin et al., 2004). Inter-

estingly, we noted a significant decrease in spontaneous

locomotor activity in RSV-treated mice, which is converse

to the hyperactive phenotype of the PGC-1a�/�mice, thus

pointing once more to a potential connection between

mitochondrial activation and PGC-1a, this time in the

CNS. In fitting with these potential neuroprotective effects

has been the recent observations that RSV rescued neuro-

nal dysfunction induced by the polyglutamine tracts in the

Huntington protein in C. elegans (Parker et al., 2005) and

significantly delayed the age-dependent decay of locomo-

tor activity and cognitive performances in the short-lived

vertebrate, N. furzeri (Valenzano et al., 2006). A potential

connection with SIRT1 becomes apparent in the remark-

able protection against axonal degeneration afforded by

SIRT1 activation in the Wallerian degeneration slow

mice, an effect that can be reproduced in vitro on dorsal

root ganglion cultures by RSV (Araki et al., 2004).

Mitochondrial function can impact on whole-body me-

tabolism. This is most evident in the muscle, a metaboli-

cally flexible tissue that switches between carbohydrate

and lipid as substrates in order to meet the energy de-

mands (Kelly and Scarpulla, 2004). Indeed, impaired mito-

chondrial function that directs fatty acids toward storage,

as opposed to oxidation, may contribute considerably to

intramyocellular lipid accumulation, which has been linked

to insulin resistance in obesity and type 2 diabetes in hu-

mans (Patti et al., 2003; Petersen et al., 2004; Virkamaki

et al., 2001). In line with this, RSV significantly improved

both muscle oxidative capacity and sensitivity to insulin

in HF-fed mice. Although the RQ, reflective of whole-

body substrates use, was unchanged under RSV treat-

ment, gene-expression analysis in the gastrocnemius

supported an increase in fatty-acid oxidation since

MCAD (Figure 5C) expression was increased and glucose

utilization reduced as PDK4 levels were increased (data

not shown) (Kim et al., 2006). Complimenting the effects

on tissues metabolizing fat, such as muscle and BAT,

was the effect of RSV on storage tissues such as WAT,

where it reduced both fat pad mass and adipocyte size.

Consistent with such wide-spread effects of RSV on fat

and muscle was the previous work showing increased

fat mobilization by genetically manipulating SIRT1 activity

(Picard et al., 2004), as was the capacity of SIRT1 to mod-

ulate muscle-cell differentiation (Fulco et al., 2003).

Admittedly, RSV is reported to have pleiotropic proper-

ties, including the activation of signaling pathways in-

volving AMPK, thyroid hormone, and estrogen (Baur and

Sinclair, 2006; Baur et al., 2006). However, in the mus-

cle-microarray analysis, we did not observe enrichment

of gene expression in pathways related, for example, to

estrogen or thyroid signaling. Together, with our data dem-

onstrating that the muscle gene-expression changes are

critically dependent on the presence of SIRT1, our data

confirm the fact that SIRT1 is themain target of RSV’smet-

abolic actions (Howitz et al., 2003). At this point, we cannot

determine whether PGC-1a is the only target of RSV-acti-

vated SIRT1. However, evidence supporting the impor-

tance of PGC-1a in mediating effects of RSV onmitochon-

drial gene expression in muscle cells is the fact that RSV’s

effects were not observed unless the wild-type PGC-1a

protein was overexpressed and that these effects are

lost in cases where the acetylation sites, targeted by

SIRT1, were mutated in PGC-1a. Furthermore, the effects

of RSV in themuscle and BAT recapitulate those observed

by stimulating PGC-1a activity and are hence consistent

with the convergence between SIRT1 and PGC-1a activa-

tion described in the hepatocyte (Rodgers et al., 2005).

Despite this, we cannot exclude unequivocally that PGC-

1a is the sole target of SIRT1, as SIRT1 interacts with

and deacetylates other substrates (Blander and Guarente,

2004), including potential regulators of metabolism and

mitochondrial function such as FOXO1 (Brunet et al.,

2004; Motta et al., 2004) and p53 (Matoba et al., 2006). Fi-

nally, it is possible that the consequence of RSV activation

of SIRT1 is different in other tissues, since unlike the stim-

ulation of PGC-1a activity seen here in muscle and previ-

ously reported in liver (Rodgers et al., 2005), in the PC12

adrenal cell line, PGC-1a activity was inhibited by SIRT1

(Nemoto et al., 2005).

Since mitochondria are recognized organelles for aero-

bic production of high-energy phosphates and bear a cen-

tral role in cellular metabolism, especially in tissues with

high metabolic intensity, it is not surprising that their dys-

function has been associated with cardiovascular, meta-

bolic, and neurodegenerative diseases. Our studies ge-

netically and pharmacologically associate SIRT1 with

PGC-1a and EE and warrant the further evaluation of

SIRT1 activators as a strategy to prevent and/or treat

these common disorders. This could be particularly ap-

pealing in the metabolic arena, where physical activity

and dietary restriction, the cornerstones of clinical man-

agement of the metabolic syndrome, are known to en-

hance mitochondrial activity. It is tempting to speculate

that the basis of the French paradox and the beneficial ef-

fect of RSV on life span could be attributed in part to the

prevention of chronic cardiovascular, metabolic, and neu-

rodegenerative diseases, important determinants of mor-

tality in the industrialized world. This claim is supported by

data in a concurrent study, which demonstrated that long-

termRSV administration extended life spans of mice (Baur

et al., 2006).

EXPERIMENTAL PROCEDURES

In Vivo Analysis

Four to eight weekmale C57Bl/6J mice from Charles River (L’Arbresle,

France) and 8 week male KKAy mice from Clea (Tokyo, Japan) were

housed in specific pathogen-free conditions with a 12 hr light-dark cy-

cle and had free access to water and food. RSV (Orchid, Chennai, In-

dia) was mixed with either powdered chow (DO4, UAR, France) or HF

diet (D12327, Research diet, New Brunswick, USA) at a concentration

of 4 g/kg of food to provide a 400 mpk dose, and pellets were then re-

constituted. Control groups received pellets without drug. Bodyweight

and caloric intake were monitored throughout the experiments.
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The protocols used to assess behavioral, cardiac, and metabolic

phenotypes included the following: body composition by DEXA; EE

by indirect calorimetry (13 hr, food and water) and 4�C cold test

(6 hr); circadian activity by metabolic cage monitoring (32 hr); anxiety

by open field, elevated-plus-maze, and light/dark test; locomoter func-

tion by rotarod, string and grip strength test; blood pressure and heart

rate by tail-cuff system; cardiac anatomy and systolic and diastolic

function by echocardiography; glucose sensitivity by an oral glucose

tolerance test (16 hr fasted, 2 g glucose/kg mouse), and hyperinsuline-

mic euglycemic clamp (4 hr fast, 18 mU insulin/kg/min, clamped at 5.5

mmol/L for 60min); and endurance test by variable speed belt treadmill

and incremental speed protocol (range from 18 cm/s to 40 cm/s on

habituated 2 hr fasted mice). These tests were performed as outlined

in the standard operating procedures (SOP) linked to the EMPReSS

website http://empress.har.mrc.ac.uk and as described in the Supple-

mental Experimental Procedures.

Ex Vivo Analysis

O2 consumption was measured in glycolytic fibers isolated from gas-

trocnemius muscle, using the technique as described (N’Guessan

et al., 2004). See Supplemental Experimental Procedures for a brief

description.

Histological and Biochemical Analysis

Histological analysis, including HE and SDH staining and electron mi-

croscopy (EM), were performed as outlined on the EMPReSS website

(http://empress.har.mrc.ac.uk) and described in the Supplemental Ex-

perimental Procedures. Mitochondria in EM images were quantified

using Image J version 1.36b.

Citrate synthase activity in gastrocnemius muscle extracts was

determined spectrophotometrically (Ceddia et al., 2000). Fecal lipids,

including triglyceride and cholesterol content, were measured enzy-

matically, using commercially available kits and manufacturers proto-

col (WAKO, Richmond, VA), following a Folch extraction. Blood plasma

was analyzed for insulin by ELISA (Crystal Chem, Downers Grove, IL),

glucose by glucose oxidase kit (Sigma, Lyon, France) and free fatty

acids, triglycerides, HDL, LDL, AST, ALT, and total cholesterol using

enzymatic assays (Boehringer-Mannheim, Mannheim, Germany) on

an Olympus automated analyzer.

In Vitro Analysis

SIRT1�/� and +/+MEFs (Chua et al., 2005) and the C2C12mousemyo-

blast cell line were maintained in culture as described previously

(Rodgers et al., 2005). Following C2C12 myotube differentiation, cells

were infected with adenovirus expressing either Flag-HA-PGC-1a,

Flag-HA-R13, or Sirt1 shRNA (Rodgers et al., 2005). MEFs and

C2C12 were treated for 24 hr with 50 mM RSV or DMSO.

DNA, RNA, and Protein Analysis

Total DNA was extracted as described in the Supplemental Experi-

mental Procedures, and quantitative (Q) PCR was performed using

mitochondrial DNA and genomic DNA-specific primers.

RNAwas extracted using the TRIzol� reagent (Invitrogen, Carlsbad,

CA). Q-RT-PCR was performed as described (Watanabe et al., 2004).

Primer details are listed online (Table S2). Affymetrix mouse 430_2

microarray analysis was performed according to the manufacturer’s

instructions (Affymetrix, Santa Clara, CA). Data were analyzed by Affy-

metrix MAS 5.0 software and GSEA (http://www.broad.mit.edu/gsea)

(Mootha et al., 2003; Subramanian et al., 2005).

Nuclear protein fractions from gastrocnemiusmuscle were prepared

as described online. Protein extracts were separated by SDS-PAGE

and immunoblotted using antibodies against PGC-1 (H-300, Santa

Cruz, CA), SIRT1 (anti-Sir2, Upstate, Norcross, GA), tubulin (Upstate)

and actin (Santa Cruz, CA). PGC-1 acetylation was analyzed by immu-

noprecipitation of PGC-1 from nuclear lysates (50 mg) with anti-PGC-1

antibody (1 mg) followed by western blot using an acetyl-lysine anti-

body (Cell Signaling, Danvers, MA) (Rodgers et al., 2005).

Clinical Genetic Study

The collection of subjects and the study protocol have been published

(Salmenniemi et al., 2004), and a brief summary is available online. The

study protocol was approved by the Ethics Committee of the Univer-

sity of Kuopio, and all subjects gave an informed consent. The mean

age and BMI of the subjects was 34 years and 23 kg/m2, respectively.

All subjects underwent anOGTT. Indirect calorimetry was performed in

the fasting state and during hyperinsulinemia (40mU/m2/min insulin in-

fusion for 120min) as described (Salmenniemi et al., 2004). The rates of

EE were calculated according to Ferrannini et al. (1988). Selection of

the SNPs of Sirt1 was based on linkage disequilibrium and haplotype

block analysis of the HapMap project data (http://www.hapmap.org;

Public Release #20/Phase II, January 24, 2006; population: Utah resi-

dents with ancestry from northern and western Europe).

Statistics

Statistical analyses were performed with the Student’s t test for inde-

pendent samples (nonparametric), and data are expressed asmeans ±

SEM unless specified otherwise. P value > 0.05 was considered as

statistically significant.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

three figures, and one table and can be found with this article online

at http://www.cell.com/cgi/content/full/127/6/1109/DC1/.
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