
A Systems Level, Functional Genomics Analysis of
Chronic Epilepsy

Kellen D. Winden1,2,3., Stanislav L. Karsten3,10., Anatol Bragin3,5, Lili C. Kudo3,9, Lauren Gehman8,

Josephine Ruidera3, Daniel H. Geschwind1,2,3,6,7*, Jerome Engel Jr.3,4,5*

1 Interdepartmental Program for Neuroscience, University of California Los Angeles, Los Angeles, California, United States of America, 2 Program in Neurogenetics,

University of California Los Angeles, Los Angeles, California, United States of America, 3Department of Neurology, University of California Los Angeles, Los Angeles,

California, United States of America, 4Department of Neurobiology, University of California Los Angeles, Los Angeles, California, United States of America, 5 The Brain

Research Institute, University of California Los Angeles, Los Angeles, California, United States of America, 6 Semel Institute for Neuroscience and Human Behavior, David

Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America, 7Department of Human Genetics, University of California

Los Angeles, Los Angeles, California, United States of America, 8Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles,

Los Angeles, California, United States of America, 9NeuroIndx Inc., Signal Hill, California, United States of America, 10Division of Neuroscience Research, Department of

Neurology, Harbor-UCLA Medical Center, Torrance, California, United States of America

Abstract

Neither the molecular basis of the pathologic tendency of neuronal circuits to generate spontaneous seizures
(epileptogenicity) nor anti-epileptogenic mechanisms that maintain a seizure-free state are well understood. Here, we
performed transcriptomic analysis in the intrahippocampal kainate model of temporal lobe epilepsy in rats using both
Agilent and Codelink microarray platforms to characterize the epileptic processes. The experimental design allowed
subtraction of the confounding effects of the lesion, identification of expression changes associated with epileptogenicity,
and genes upregulated by seizures with potential homeostatic anti-epileptogenic effects. Using differential expression
analysis, we identified several hundred expression changes in chronic epilepsy, including candidate genes associated with
epileptogenicity such as Bdnf and Kcnj13. To analyze these data from a systems perspective, we applied weighted gene co-
expression network analysis (WGCNA) to identify groups of co-expressed genes (modules) and their central (hub) genes.
One such module contained genes upregulated in the epileptogenic region, including multiple epileptogenicity candidate
genes, and was found to be involved the protection of glial cells against oxidative stress, implicating glial oxidative stress in
epileptogenicity. Another distinct module corresponded to the effects of chronic seizures and represented changes in
neuronal synaptic vesicle trafficking. We found that the network structure and connectivity of one hub gene, Sv2a, showed
significant changes between normal and epileptogenic tissue, becoming more highly connected in epileptic brain. Since
Sv2a is a target of the antiepileptic levetiracetam, this module may be important in controlling seizure activity. Bioinformatic
analysis of this module also revealed a potential mechanism for the observed transcriptional changes via generation of
longer alternatively polyadenlyated transcripts through the upregulation of the RNA binding protein HuD. In summary,
combining conventional statistical methods and network analysis allowed us to interpret the differentially regulated genes
from a systems perspective, yielding new insight into several biological pathways underlying homeostatic anti-
epileptogenic effects and epileptogenicity.
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Introduction

Epilepsy is a neurological condition with myriad etiologies that

is characterized by the recurrence of spontaneous seizures [1].

One of the most common epilepsy sub-types is mesial temporal

lobe epilepsy (MTLE), where the epileptogenic region is localized

to the temporal lobe [1]. Pathologically, the hippocampus in

humans and animals with MTLE reveals alterations in multiple

cellular processes, including inflammation, cell death and synaptic

reorganization [2]. Advances in genetics, electrophysiology, and

molecular biology have already led to significant understanding of

the types of genes and pathways that cause chronic seizures [3]. In

addition, discovery of genes and loci associated with focal

epilepsies in the temporal lobe promise to provide insight into

the etiology of MTLE [4,5]. Although the genetic contribution to

MTLE seems negligible because MTLE is often precipitated insult
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to the brain [6], patients that develop MTLE are more likely to

have a family history of epilepsy [7,8]. Therefore, genetic factors

may modify the development of epilepsy and generation of

spontaneous seizures, and understanding the mechanisms by

which temporal lobe lesions lead to chronic epilepsy will provide

insight into the genetic basis of epileptogenicity and epilepsy

susceptibility.

There are several models of MTLE that utilize the injection of

a neurotoxin (i.e. kainic acid, pilocarpine) to induce a brief period

of status epilepticus. After a latent period, these animals will go

on to develop spontaneous, recurrent seizures [9]. Although these

models accurately recapitulate many aspects of human MTLE,

there are many interconnected factors that affect gene expression,

including the effects associated with the lesion, seizures, and

ability to generate spontaneous seizures (epileptogenicity). We

focused on the effects associated with seizures and epileptogeni-

city because these changes are the most important for

understanding epileptic processes. In addition, the alterations

caused by seizures could provide insight into homeostatic, anti-

epileptogenic mechanisms that must be overcome for seizures to

occur.

The study of epilepsy at the molecular level has been greatly

aided by the use of genome-wide expression microarrays, which

provide expression information for all genes that are expressed

within a biological sample. Several studies have used gene

expression data to identify candidate genes involved in epilepto-

genesis, such as Cystatin C and Homer 1A [10,11], but

understanding the biological significance of these dysregulated

genes has been more challenging. Recently, a study of the

hippocampus throughout the development of epilepsy revealed

differentially expressed genes involved in multiple processes,

including cell death, complement activation, oxidative stress, glial

activation, and GABA signaling [12]. However, this study was

limited by the absence of a control for the epileptogenic

hemisphere, resulting in the inability to differentiate between

effects of epilepsy and the lesion. Additionally, the effects of

chronic seizures that might reflect a homeostatic anti-epileptogenic

response to seizures have rarely been studied or factored into these

analyses.

Here, we used a model of MTLE where kainic acid (KA) is

injected into one hippocampus to induce status epilepticus [13].

Approximately half of the animals developed spontaneous

seizures, and we found that the epileptogenic region within the

animals that developed epilepsy was localized to the lesioned

hippocampus, consistent with previous studies [13]. Therefore, we

reasoned that there must be underlying differences in the lesioned

hippocampi of animals that developed seizures that explain their

epileptogenicity. To identify these differences, we grossly exam-

ined these animals histologically and used whole genome

microarrays to analyze gene expression differences. We focused

on gene expression changes within the dentate gyrus because the

pathological high frequency oscillations that have been found in

the dentate are thought to demarcate the epileptogenic region

within this animal model [13]. We used differential expression

analysis to examine effects of epilepsy on gene expression. Initially,

we separately identified the effects of the lesion and seizures and

used these data to identify gene expression changes associated with

epileptogenicity. We then used weighted gene co-expression

network analysis (WGCNA) to distill a potentially long list of

genes into a network structure that facilitates interpretation of

these gene expression changes. Using both methods of analysis, we

were able to identify and characterize genes and pathways that

were associated with epileptogenicity and with the effects of

chronic seizures.

Materials and Methods

Animals
The University of California, Los Angeles, Institutional Animal

Care and Use Committee approved all procedures involving

animals described in this study. The ARC protocol ID is #2000-

153-32. Total of twenty-seven oubred male (250–300 g) Wistar

rats were used in these studies. Adult male rats were given atropine

(0.04 mg i.m.), anesthetized with isofluorane 2%, and unilaterally

injected with kainic acid (KA; 0.2 ml; 2.0 mg/ml normal saline) in

the right posterior CA3 area of hippocampus (AP=25.6 mm,

ML=4.0 mm, DV=7.0 mm. A 30ga. needle attached to a

Hamilton 1.0 ml syringe was lowered into the injection site and

after 5 minutes, one half of the volume was injected. After another

5 minutes, the needle was raised 0.5 mm and the remainder of the

solution was injected. After 20 minutes, the needle was withdrawn.

Beginning 2 months after injection, video monitoring was

performed for all rats in order to detect spontaneous behavioral

seizures. After eight months of video monitoring rats were divided

for electrophysiological (n = 12), microarray (n = 10).

Microelectrode implantation
Eight – twelve months after kainic acid injection rats selected for

electrophysiological experiments were anesthetized with isofluor-

ane, 2%. Pairs of tungsten wires (60 mm in diameter) with 0.5 mm

vertical tip separation were placed in the right angular bundle to

stimulate perforant path afferents to the hippocampus

(AP=27.0 mm from bregma, ML=3.5 mm and DV=2.5 mm

from the surface of neocortex, Paxinos, Watson, 1997). Fixed

recording microelectrodes also consisted of pairs of tungsten wires

with 1.0 mm vertical tip separation. They were implanted

bilaterally at symmetrical points in the dentate gyrus (DG) and

CA1 region of anterior hippocampus (AP=23.5, ML=2.0,

DV=3.5–4.5), DG region of the posterior hippocampus

(AP=25.0, ML=4.0 DV=5.0); EC (AP=28.0, ML=5.0,

DV=7.0) and piriform cortex (AP=2.2, ML=4.0 DV=6.5).

Electrophysiological recordings
During in vivo recordings in freely moving rats, five 4-channel

MOSFET input operational amplifiers mounted in the cable

connector served to eliminate cable movement artifacts. Physio-

logical data were recorded wide-band 0.1 Hz to 3.0 kHz and

sampled at 10 kHz/channel (16 channels) with 12 bit precision

using RC-Electronics (Santa Barbara, CA) software. Location of

electrodes was determined on the basis of the shape of responses to

perforant path stimulation. Recordings were performed during 1

month 5 days a week and 8–10 hours a day. After completion of

electrophysiological experiments rats were given overdose of

Nembutal and perfused for following histological verification of

the location of the recorded electrodes and for neo-Timm staining

for estimation of mossy fiber sprouting [14]. An image analysis

program was used to quantify these data by counting silver deposit

punctae and expressing these data as a density, by dividing by the

total area [14].

Data analysis
Recorded seizures were classified on the basis of electrophys-

iological onset pattern, signal averaging and power spectral

analysis. For high frequency oscillations (HFOs) analysis raw

records were band-pass filtered between 80–500 Hz, using a

Butterworth filter with roll off 3 dB, which does not introduce any

visible phase lag. Then HFOs were detected by DataPac (Mission

Viejo, CA) software followed by averaging and power spectrogram

analysis.

A Functional Genomics Analysis of Epilepsy
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Microdissections
Ten rats were taken for microarray studies: five with

documented behavioral spontaneous seizures and five rats without

spontaneous seizures. Rats were anesthetized with isofluorane,

brains were quickly removed and sectioned by vibratome into

400 mm slices. Dentate gyri were removed under dissecting

microscope and placed in 280C for further microarray experi-

ments. Horizontal sections were taken approximately 6.2 mm

below the bregma. The comparisons were performed between the

area of dentate gyri (DG) adjacent to the KA lesion and non-

lesioned contralateral side in each animal.

RNA isolation and probe preparation
RNA extraction was performed using Trizol (Invitrogen). RNA

concentration and quality were evaluated using Nanodrop ND-

1000 spectrophotometer (NanoDrop) and Agilent 2100 Bioana-

lyser (Agilent). We used 100 ng of RNA as the initial starting

template, which was labeled with Cy-3 or Cy-5 cytidine -59-

triphosphate (CTP) using the low input fluorescent linear

amplification kit (Agilent). The labeled cRNA concentration was

verified (Nanodrop) and RNA quality was checked on an Agilent

Bioanalyzer (Agilent).

Microarray platforms
Two commercial oligonucleotide microarray platforms, the Rat

Microarray carrying 20,500 probes representing 15,703 unique

GeneBank IDs (Agilent Technologies, CA) and the CodeLink Rat

Whole Genome array with 33,664 probes representing 24,329

unique GeneBank IDs (GE Healthcare) were used to identify gene

expression changes. Both platforms contained a total of over

54,164 distinct oligonucletide probes. Due to partial overlap in the

gene lists of Agilent and CodeLink microarray platforms, the total

list of probes corresponded to 29,080 unique GeneBank sequences

that represented 14,439 unique genes with known full-length

cDNA sequence (including RIKEN genes) and additional 14,641

expressed sequence tags (ESTs). 9,879 genes were represented by

more then one probe, which typically recognized different parts of

the transcript. For the Agilent microarrays, the right dentate gyrus

from one animal was labeled with Cy-5, and the left dentate gyrus

from the same animal was labeled with Cy-3. These were then

hybridized to the same slide. The dyes were then swapped, and the

same samples were hybridized to another slide. For the Codelink

microarrays, all samples were labeled and hybridized in a random

order to two chips, each containing twelve arrays. As a result, each

individual sample was hybridized to at least three different

microarrays (2 Agilent & 1+ Codelink). Microarray hybridization

and scanning was performed according to manufacturers proto-

cols. We have deposited the raw data at GEO under accession

numbers GSE27015 (Agilent) and GSE27166 (Codelink), and we

can confirm all details are MIAME compliant.

Microarray data analysis
We imported the raw data from the Agilent and Codelink

microarrays into R (http://www.r-project.org/). We used avail-

able libraries from Bioconductor (http://www.bioconductor.org/)

to analyze the one-color and two-color microarray designs. For the

two-color Agilent data, we used the linear models package

(LIMMA). After the removal of flagged data, we used the default

method for background subtraction and used quantile normaliza-

tion to normalize values between arrays. We used the empirical

Bayesian algorithm to determine differential expression and fold

changes between different conditions. For the one-color Codelink

data, we removed all of the flagged data, as well as all of the

control probes. We used the quantile method to normalize the

data. A Bayesian ANOVA was used to compare different

conditions and determine differential expression.

In order to determine differential expression, we used the

corrected p-value threshold (FDR),0.10 and fold change.1.2 for

both platforms. Using BLAST, we then mapped probes between

the two platforms to determine those that targeted the same exon

of the same gene. If a differentially expressed probe targeted the

same exon as a non-differentially expressed probe on the other

platform, then we required that the two probes be moderately

correlated (r.0.5) for that gene to be called differentially

expressed. All probes that targeted an exon uniquely and met

the differential expression criteria were called differentially

expressed.

We performed four major analyses to identify differentially

expressed genes. 1) Differential expression between the injected

and non-injected hippocampus in animals without seizures.

2) Differential expression between the injected and non-injected

hippocampus in animals with seizures. 3) Differential expression

within the injected hippocampi between animals with seizures and

animals without seizures. 4) Differential expression within the non-

injected hippocampi between animals with seizures and animals

without seizures.

DAVID gene ontology analysis
The genes that were identified as differentially expressed were

used for gene ontology and network analyses. We used DAVID

(http://david.abcc.ncifcrf.gov/) to identify over-represented func-

tional categories within each group of differentially expressed

genes [15]. Annotations were imported into DAVID, and all

categories with an uncorrected EASE score of less than 0.05 were

kept as significant.

Network analysis
To identify the gene expression patterns in the dataset in an

unbiased manner, we performed weighted gene co-expression

network analysis (WGCNA) [16,17,18]. The data collected on the

Agilent platform was used for WGCNA because there were more

arrays. Initially, the data was normalized using quantile normal-

ization and outlier arrays were removed. We selected genes based

on high coefficient of variation, and pairwise Pearson correlations

were calculated between all of these genes. We then raised these

correlations to a power to approximate scale free topology within

the network. From these scaled correlations, we calculated the

topological overlap (TO) between all genes, which summarizes the

degree of shared connections between two genes. Genes were then

clustered based on their TO and then visualized in a dendrogram.

Branches of the dendrogram are then isolated using a dynamic

tree cutting algorithm [19], which correspond to groups of co-

expressed genes. We summarized gene expression within a module

using the first principal component of gene expression, and we

term this value the ‘‘module eigengene’’ (ME) or the most

representative expression pattern within the group of genes. For

each gene, we determine module eigengene based connectivity

(kME) by calculating the absolute value of the Pearson correlation

between the expression of the gene and the ME. The kME of a gene

is related to its module centrality and importance to organization

of the rest of the module [17].

Cell type analysis
To determine which cell types that genes in a module were

associated with, we used two published resources. The first was a

database of gene expression from purified mouse neurons,

astrocytes, and oligodendrocytes [20], and we imported the raw

A Functional Genomics Analysis of Epilepsy
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microarray data into R and normalized the data using the affy

package, using optimal parameters [21]. We matched genes within

a specific module to corresponding Affymetrix probes based on

gene symbols and examined the expression of these genes visually.

The second resource identified co-expressed groups of genes that

corresponded to specific human neural cell types [17]. We

identified the genes from our seizure-related modules in this cell

type analysis based on gene symbol, and we calculated the average

kME for those genes within each of the conserved modules. The

average kME from our genes of interest was compared to the

average kME for a random group of genes that was the same size,

and we calculated a Z-score for each of our epilepsy-related

modules within all of the consensus modules in the human cortical

transcriptome.

Quantitative RT-PCR
To validate the expression changes, we used qRT-PCR as

previously described [22]. Briefly, RNA was converted to cDNA

using the First Strand Synthesis Kit (Invitrogen). Gene specific

primers were designed to amplify ,100 bp regions of target genes

(Table S1). Amplification was detected using Sybr Green (Bio-

Rad) in a Light Cycler 3900 (ABI). For each gene in each

experiment, a sample without reverse transcriptase was included to

demonstrate specificity and lack of DNA contamination. Relative

quantification was used to determine the abundance of each gene.

The delta delta Ct method was used to calculate the fold change of

each gene relative to the loading control beta actin.

In situ hybridization
Gene specific probes were designed to be ,500 bp and directed

against same regions that the microarray probes targeted (Table

S2). In situ hybridization was performed as previously described

[23]. Briefly, epileptic and non-epileptic rats were sacrificed, the

brains were dissected out, and they were flash frozen on dry ice.

Coronal sections were cut using a cryostat. Radioloabeled

nucleotide probes were hybridized onto the sections, and they

were allowed to develop for eight days.

Results

Phenotypic characterization of seizures
We examined an animal model of focal epilepsy in which KA is

injected into the hippocampus of one hemisphere. Out of the

twelve animals used for detailed electrophysiological and behav-

Figure 1. Characterization of seizure model. Using electrophys-
iological and histological methods, we characterized a subset of animals
that received KA injection. a) Sample in vivo electrophysiology

recording, demonstrating a spontaneous seizure in the hippocampus
of the lesion side. In total, eleven seizures were recorded in the group of
epileptic animals. Eight seizures (73%) started in the right posterior
hippocampus in the area adjacent to the KA lesion and did not spread
to other brain areas, and three seizures (27%) started simultaneously in
right and left hippocampi. Seizures in this animal model have been
previously characterized [13,77]. Abbreviations: R/LOF – right/left orbital
frontal, R/LPH – right/left posterior hippocampus, R/LAH – right/left
anterior hippocampus, R/LEC – right/left entorhinal cortex. b) Example
of pHFOs recorded from the dentate gyrus of animals with chronic
epilepsy, where the fast ripples occur simultaneously with an interictal
spike. Averaged power spectra of fast ripples recorded from the dentate
gyrus, where the arrows denote the presence of physiological ripples at
,200 Hz and pHFOs at ,400 Hz. c) Representative, horizontal sections
from one epileptic animal stained by cresyl violet and Timm method
eight months after KA injection. In the right hippocampus, the CA3 area
is absent due to the KA lesion (indicated by arrow). Dotted lines indicate
areas that were dissected for microarray experiments. Timm staining
demonstrates moderate mossy fiber sprouting is on the lesion side.
Scale bar = 1 mm.
doi:10.1371/journal.pone.0020763.g001
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ioral characterization of seizures, we observed that five (42%)

animals had clear behavioral seizures during the monitoring

session and seven (68%) did not have clinically observable seizures.

Within the seven animals that did not display behavioral seizures

during video monitoring, electrographic seizure activity was

recorded in two animals. This is consistent with the fact that

some animals with KA treatment demonstrate electrographic ictal

events without evident behavioral seizures. A majority of the

recorded seizures began in the posterior hippocampus of the

lesioned hemisphere (Figure 1a), which suggested that the

epileptogenic region was commonly localized to the lesioned

hemisphere. These data are supported by the presence of

pathological high frequency oscillations during interictal periods

in the right posterior hippocampus in 3 of 5 animals with seizures

and none of the animals without seizures (Figure 1b). Pathological

high frequency oscillations (250–600 Hz) have been found within

epileptogenic areas of the dentate gyrus [24]. Therefore, these data

demonstrate that our intrahippocampal injection of KA models

focal epileptogenic processes in the lesioned hemisphere, as has

been shown previously [13].

To understand the pathological processes initiated by KA that

are involved in the ability to generate seizure activity (epilepto-

genicity), we undertook detailed examinations of multiple animals

with and without seizures on both morphological and histological

levels. The study design allowed us to compare animals with and

without seizures, despite the fact that all animals had experienced

an initial neurotoxic lesion. Cell death is thought to be important

in the development of epilepsy [2], and therefore, we examined the

gross histology of the lesioned hemisphere of multiple animals to

determine whether animals that developed epilepsy demonstrated

greater degrees of cell death. In both animals with and without

seizures, the area of the dentate gyrus on the lesion side was

smaller than the non-lesioned side (Figure 1c), but there was no

obvious difference between the animals with and without

spontaneous seizures. We then examined mossy fiber sprouting

because it has also been thought to be important for epileptogenic

processes [2]. However, Timm staining revealed that there was no

significant difference in mossy fiber sprouting between animals

with and without seizures (with seizures 1.4160.27SD; without

seizures 1.1660.10SD) (Figure 1c). Therefore, these data demon-

strate that the processes leading to the epileptogenicity of the

lesioned hemisphere in this animal model cannot be explained by

differences in cell death or mossy fiber sprouting, and we reasoned

that changes associated with the development of epilepsy might be

reflected on the molecular level.

Genome-wide analysis of differential gene expression in
seizures and lesions
Ten additional animals were used for analysis of gene

expression in chronic epilepsy. The dentate gyri of five animals

with documented chronic behavioral seizures were isolated by

microdissection, as well as equivalent regions in five animals that

did not develop epilepsy (Methods; Figure 2a; Table S3). We took

a conservative approach in our categorization of animals and

separated animals into groups based on overt clinical seizures.

Although it is possible that some animals without obvious seizures

may have had sub-clinical seizure activity, thus decreasing our

power to identify changes associated with epilepsy, our conserva-

tive approach would enable us to have more confidence in any

expression changes observed. Left and right dentate gyri were

processed separately to enable us to distinguish gene expression

changes between the lesioned side (right) and the non-lesioned side

(left) in animals with and without seizures. In addition, we used

two independent microarray platforms (Agilent and Codelink) to

expand our search for gene expression changes and allow for cross

validation of expression changes with an independent method. In

total, 64 microarrays across both array platforms were analyzed,

profiling the left and right dentate gyri separately from animals

with (n = 5) and without seizures (n = 5).

We identified differentially expressed genes from both micro-

array platforms independently (see Methods). For each compar-

ison (see below), we used a false discovery rate (FDR),0.10 and a

Figure 2. Experimental design and differential expression
analysis. Animals were injected with KA as described in the methods,
and gene expression between different samples was compared to
identify the effects of seizures and neurotoxic lesion. a) All animals were
injected with KA into the right hippocampus but only half of the
animals developed chronic epilepsy. Expression in both hippocampi
from five animals that developed chronic seizures and five that did not
develop chronic seizures was investigated using both the Agilent and
Codelink microarrays. The expected effects of interest are illustrated,
including 1) the effect of the lesion (L), 2) the effects of seizures (S), and
3) the effects associated with epileptogenicity (E). b) We used two
differential expression analyses to identify gene expression changes
caused by the lesion. We found 619 differentially expressed genes
between the lesioned and non-lesioned hippocampi in animals with
seizures (ESL-S = EL) and 24 differentially expressed genes between the
lesioned and non-lesioned hippocampi of animals without seizures (L-
O= L). c) We then used two differential expression analyses to identify
gene expression changes caused by seizures in the lesioned and non-
lesioned hippocampi. We identified 381 differentially expressed genes
between animals with and without seizures in the lesioned hippocam-
pus (ESL-L) and 385 differentially expressed genes between animals
with and without seizures in the non-lesioned hippocampus (S-O).
doi:10.1371/journal.pone.0020763.g002
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fold change .1.2 as criteria to determine differential expression.

We were confident in differentially expressed genes at these liberal

FDR and fold change thresholds because we will use several

comparisons between platforms and conditions to help eliminate

false positives. Because different probes that are associated with the

same gene may correspond to different exons and measure

different splice variants, we carefully compared all differentially

expressed probes across the two platforms for their specific

location within their target genes (see Methods). To perform this

comparison, we used all differentially expressed probes and

identified the corresponding probes on the other platform that

targeted the same gene. In the simplest case, a probe uniquely

targeted a gene and there was no corresponding probe on the

other array, and we considered the gene differentially expressed

(n = 519). Within the group of genes that were targeted by a probe

from each platform, we determined whether or not the two probes

targeted the same exon. If a differentially expressed probe did not

have a corresponding probe targeting the same exon, then the

gene was considered differentially expressed because the probe

may represent a differentially regulated splice variant (n = 450).

However, if the differentially expressed probe and corresponding

probes from the other platform targeted the same exon, we

compared the probes using a Pearson correlation, and if the

probes were moderately correlated (r.0.5), we considered the

gene to be differentially expressed (n= 440). We used this

conservative correction based on the correlation to limit false

positives caused by noisy or non-specific probes.

Expected effects on gene expression
The experimental design permitted us to separate three main

effects on gene expression of major interest: 1) the effect of the KA-

induced lesion that is unrelated to epilepsy (lesion; L), 2) the effect

of chronic seizures on the brain (seizure; S), and 3) gene expression

changes associated with the ability to generate spontaneous

seizures (epileptogenicity; E). We reasoned that the effect of

neuronal injury due to KA injection (L) would be seen in the

lesioned hippocampus of both animals with and without seizures

(Figure 2a). In addition, we expected that the effects of chronic

seizures (S) would be seen in both the lesioned and unlesioned

hippocampi of the animals with seizures (Figure 2a). Finally, we

reasoned that the effects associated with epileptogenicity (E) would

only be seen in the lesioned hippocampus of animals with seizures

(Figure 2a). We used these classifications to filter the observed gene

expression effects in subsequent analyses of differential expression.

Effects of the lesion
To identify the specific effect of the lesion, we identified genes

that were differentially expressed between the lesioned and non-

lesioned hippocampi of animals without seizures (L-O=L). This

analysis led to the identification of 24 differentially expressed genes

that were specifically associated with the long-term effects of the

lesion and independent of any epileptic processes because these

animals did not have seizures (Figure 2b; Table S4). Interestingly,

when we performed the same analysis on animals with seizures

(ESL-S=EL), we identified many more significant gene expression

changes associated with the lesion side (n = 619 genes; Figure 2b;

Table S5). By comparing the two lists of differentially expressed

genes due to the lesion, we found that all 24 of the genes that were

differentially expressed due to the lesion in animals without

seizures were also differentially expressed in animals with seizures

(Figure 3a). Because histological comparisons between animals

with and without seizures showed similarly-sized lesions and

similar cytological effects, these data suggest not surprisingly that

there is a substantial interaction between the initial pharmacologic

lesion and chronic seizures, which may be related to epilepto-

genicity.

Gene ontology (GO) tools, such as DAVID, annotate the

functional aspects of genes based on published literature and can

identify any enrichment in these functional categories among a list

of genes. We used GO analysis to begin to characterize the

biological functions of the 24 genes specifically associated with the

response to the lesion, and despite the fact that this list is small and

therefore relatively underpowered for such analyses, this group

was significantly enriched for genes involved in cell death

(p = 7.49e-3) and the acute inflammatory response (p = 1.45e-2)

(Table 1). In addition, Gfap and Vim were differentially expressed,

and they are known to be present in reactive astrocytes [25].

Therefore, these data are consistent with the expected toxic effects

of KA on the hippocampus.

Effects of seizures
To identify the specific effects on gene expression due to chronic

seizures alone, we identified differentially expressed genes between

the non-lesioned hippocampi of animals with and without seizures

(S-O=S). This analysis led to the identification of 385 differen-

tially expressed genes that were solely related to the effects of

Figure 3. Comparisons of differentially expressed genes. The
overlap between the two lists of differentially expressed genes due to
the lesion and the overlap between the two lists of differentially
expressed genes due to seizures are shown in the Venn diagrams. a) We
compared the genes differentially expressed due to lesion in animals
without seizures (L-24 genes) and with seizures (EL-619 genes) and
found that all 24 genes that were differentially expressed due to lesion
in animals without seizures were also differentially expression in
animals with seizures, which is a significant overlap (orange; p = 2.06e-
120). In addition, we found that 595 genes that were differentially
expressed due to the lesion animals with seizures did not overlap with
the core effect of the lesion (EL-L; red). b) We then compared the genes
differentially expressed due to seizure in the lesioned (ES-381 genes)
and non-lesioned hippocampi (S-385 genes) and found a large and
significant overlap (green; n = 259 genes; p,1e-200). We also found
that 122 genes that were differentially expressed due to seizures in the
lesioned hippocampus did not overlap with the core effect of seizures
(ES-S; blue).
doi:10.1371/journal.pone.0020763.g003
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chronic seizures and unrelated to the effects of the lesion (Figure 2c;

Table S6). Because seizures were associated with such a large effect

on gene expression, we tested whether the response to chronic

seizures was similar in both hippocampi. Therefore, we performed

the parallel analysis of the lesioned hippocampus by identifying

genes that were differentially expressed between the lesioned

hippocampi of animals with and without seizures (ESL-L=ES).

This analysis identified 381 differentially expressed genes

(Figure 2c; Table S7), which we hypothesized to be related to

both chronic seizures and epileptogenicity. We then compared

these two groups of differentially expressed genes due to seizures in

the non-lesioned (Figure 3b; yellow) and lesioned (Figure 3b; blue)

hippocampi, and we found that approximately 70% of the genes

differentially regulated by seizures were shared between the two

groups (Figure 3b; green; n= 259; p,1e-200). This remarkable

and highly significant overlap represents the substantial impact

that chronic seizures have on brain gene expression and that this

effect is consistent, and independent of the lesion.

To investigate the functional consequences of the effect of

chronic seizures at the molecular level, we used GO analysis on

the differentially expressed genes due to seizures in both the

lesioned and non-lesioned hippocampi. These groups of genes

shared many enriched biological processes, including synaptic

transmission (p = 5.91e-6 & p= 3.25e-6), secretion by cell

(p = 9.15e-5 &p= 3.78e-4), and regulation of neurotransmitter

levels (p = 6.47e-4 & p=2.14e-4) (Table 2). Thus, chronic seizures

have a large and consistent effect on gene expression and these

changes suggest alterations in neuromodulation and neurotrans-

mission, which is likely a result of plasticity induced by chronic

seizures. However, based on these data alone, we cannot

determine whether these changes in neurotransmission affect

seizure activity in a causal or compensatory manner.

Effects associated with epileptogenicity
We hypothesized that candidate genes and pathways associated

with epileptogenicity would be specifically differentially expressed

within the lesioned hippocampus of animals with seizures. Two of

the previous analyses identified differentially expressed genes that

corresponded to epileptogenicity. The first group represented the

619 genes differentially expressed between the lesioned and non-

lesioned hippocampi in animals with seizures (Figure 2b), which

after subtracting the core effect of the lesion (n= 24 genes),

amounted to 595 genes (Red; Figure 3a). The second group

represented 381 differentially expressed genes in lesioned hippo-

campus due to seizures (Figure 2c), and we subtracted out the

effect of seizures (n = 259 genes) and were left with 122

differentially expressed genes (Figure 3b, blue). These 595 and

122 differentially expressed genes represent expression changes

within the epileptogenic region, but we found that many of these

genes demonstrated similar expression changes between the

lesioned hippocampus in animals with seizures and the lesioned

hippocampus of animals without seizures (Figure 4; r = 0.84).

These data suggest that the expression trend for many of these

genes was related to the effects of the lesion, although the

expression changes did not reach our statistical threshold for

differential expression in the animals without seizures. Therefore,

we used a linear regression to define the relationship between the

effects of the lesion in animals with seizures and the effects of the

lesion in animals without seizures, and we removed all of the genes

that were within two standard deviations of this line. There were

40 remaining genes whose expression changes cannot be

accounted for by either the effect of the lesion or the effect of

seizures, including Kcnj13, an inwardly rectifying potassium

channel, and Ptgds, which is involved in prostaglandin metabolism

(Figure 4; Table 3). Therefore, these differentially expressed genes

are candidate genes associated with epileptogenicity. Interestingly,

GO analysis demonstrated that this list of genes is involved in

neurotransmitter secretion (p= 1.1e-3) and neuronal differentia-

tion (p = 3.3e-2). In addition, multiple neuropeptides (Bdnf, Tac2,
and Cart) were present in the list and dramatically down-regulated

in the epileptogenic region, as well as survival genes, such as bcl-2

related protein Bok. These data suggest that neuronal survival or

function may be compromised within the lesioned hippocampus,

increasing the epileptogenicity of that region.

Gene co-expression network analysis reveals higher-level
organization of transcription
Standard analysis of differential expression allowed us to

identify some of the pathological processes and dysregulated genes

that are present in this animal model of epilepsy. But, while we

identified strong, consistent effects associated with the lesion and

seizures, the effects associated with epileptogenicity were subtler.

We have recently demonstrated the power of systems biology

approaches that utilize network methods to organize gene

expression data through the use of weighted gene co-expression

Table 2. Functional annotation of genes that were
differentially expressed due to the effects of seizures.

Category Term P-value

Biological Process Synaptic transmission 6.4e-5

Secretory pathway 7.1e-4

Regulation of neurotransmitter levels 0.0029

Dopamine metabolic process 0.0043

Protein transport 0.005

Cellular component Coated vesicle 4.2e-4

Cytoskeleton 0.015

Axon 0.023

Molecular function Transcription coactivator activity 0.019

GO analysis of the 259 differentially expressed genes that were changed due to
the effect of chronic seizures on the brain. Multiple functional categories
associated with transport and synaptic functions were enriched within this list
of genes, suggesting that chronic seizures alter neuronal function or
transmission.
doi:10.1371/journal.pone.0020763.t002

Table 1. Functional annotation of genes that were
differentially expressed due to the effects of the lesion.

Category Term P-value

Biological process Cell death 0.0074

Acute inflammatory response 0.014

Actin filament depolymerization 0.028

Metal ion transport 0.034

Cellular component Cytoskeleton 0.0021

Intrinsic to plasma membrane 0.031

Molecular function Metal ion transmembrane transporter 0.007

GO analysis of the 24 differentially expressed genes that were changed solely
due to the injection of KA. Enriched functional categories associated with the
lesion were mostly related to cell death and inflammation, which is consistent
with the expected effects of the KA injection.
doi:10.1371/journal.pone.0020763.t001
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network analysis (WGCNA) [17,18,22,26]. WGCNA is an

unbiased and unsupervised method of gene expression analysis,

which means that it does not depend on arbitrary differential

expression thresholds. Importantly, WGCNA is independent of

any characteristics associated with the sample, and therefore, any

over-simplification of the seizure phenotypes that we assigned

earlier will not confound this analysis. We used this method to

identify groups of co-expressed genes or modules corresponding to

major functional elements that contribute to gene expression

changes in our epilepsy model, as well as hub genes that are

central to the underlying biological processes. In addition, we have

previously shown that WGCNA can identify modules that

correspond to genes expressed in a specific cell types from

complex tissue, such as human brain, permitting in silico tissue

dissection [17]. Therefore, understanding the modular organiza-

tion of gene expression would allow us to explore whether

pathways within specific cell types were dysregulated due to

chronic seizures, without the need for elaborate tissue dissection

[17]. Using these methods, we were able to place observed gene

expression changes into a systems context that was then related to

the underlying biology.

WGCNA grouped the 11,000 expressed genes into forty co-

expression groups or modules (see Methods; Figure S1). We

summarized the gene expression within each module using the first

principle component, which we term the module eigengene (ME).

Within each of these modules, we calculated the Pearson

correlation between the expression of each gene and the ME to

determine ME-based connectivity (kME), which is a measure of

module centrality. We have previously shown that these central or

hub genes are important for module function and organization

[18], and we used this organization to annotate genes and rapidly

identify the most important expression changes. To assess whether

these co-expression relationships corresponded to changes due to

seizures, injection, or other aspects of biological variability, we

correlated each ME with the three major effects that were of

interest. We identified two modules that were significantly related

(r.0.5, p,0.005) to the effects associated with epileptogenicity

and ten modules that were related (r.0.5, p,0.005) to the effect

of chronic seizures.

Co-expression module suggests key role for oxidative
stress in epileptogenicity
To examine the gene expression changes related to the

epileptogenic region, we investigated the yellow module because

its ME had the greatest correlation with the epileptogenic region.

The yellow module contained 254 co-expressed genes that were

specifically changed in the lesioned hippocampus of animals with

seizures (Figure 5a). GO analysis demonstrated that these genes

were involved in axon ensheathment (p = 2.11e-10) and glial cell

differentiation (p = 1.08e-3) (Table S8). Using this module, we

investigated the central genes and processes that were associated

with epileptogenicity.

By determining the network position (kME) of each of these genes,

we were able to identify the central or hub within the module, and

we found that the most highly connected gene was Nfe2l2
(kME=0.97), which remarkably, was previously found to be

differentially expressed between the lesioned and non-lesioned

hippocampi in animals with seizures. This gene and the other hubs

within this module are illustrated in the network plot (Figure 5b).

Nfe2l2 is an important transcription factor involved in orchestrating

the cellular response to oxidative stress [27]. Two of the known

transcriptional targets of Nfe2l2, Hmox1 and Mgst1, are also

upregulated in this module and highly connected to Nfe2l2. In
addition, proteins with glutathione S-tranferase activity are over-

represented (p= 3.9e-2), which represent another aspect of the anti-

oxidant system that is regulated by Nfe2l2 [27,28]. Therefore,

several genes involved in the cellular response to oxidative stress are

specifically upregulated within the epileptogenic region of animals

with seizures. This unbiased, genome wide systems level analysis

suggests that these hub genes play a central role in this process.

To confirm the expression changes that were observed in the

yellow module, we used qRT-PCR on independent epileptic and

non-epileptic samples. We validated several genes that were highly

connected within yellow module, including Nfe2l2 (kME=0.97),

Hmox1 (kME=0.88), Mag (kME=0.95), Klk6 (kME=0.93), Apod

(kME=0.94), and Rdx (kME=0.96) (Figure 5c). For each gene, we

compared the expression in the lesioned hemisphere to expression

in the non-lesioned hemisphere. In the animals with seizures, we

observed significantly higher expression for each of these genes

within the lesioned hemisphere (p,0.05). However, there was no

significant change in the expression of any of these genes within

Figure 4. Most differentially expressed genes within the
epileptogenic region were related to the effects of the lesion.
We examined the effect of the lesion on the genes that were specifically
differentially expressed within the epileptogenic region to determine
whether they were plausible candidate genes to be associated with
epileptogenicity. The scatter plot depicts the comparison of the lesion-
induced fold changes between the animals with and without seizures
for all of the genes that were specifically differentially expressed in the
epileptogenic region. The x-axis represents the mean fold changes
between the lesioned and non-lesioned hippocampi in animals without
seizures and the y-axis represents the means fold changes between the
lesioned and non-lesioned hippocampi in animals with seizures. All of
the fold changes were transformed using log2. We found that there was
a high correlation between the expression changes in animals with
seizures and animals without seizures (r = 0.84), demonstrating many of
these expression changes were related to the lesion. To remove this
confounding factor, we used a linear regression to define the
relationship between the effect of the lesion in animals with seizures
and the effect in animals without seizures (red line). We then removed
all genes that were within two standard deviations of this line (empty
points), and after subtracting these genes, we identified 40 genes
whose gene expression changes were not related to the lesion or
seizures (12 down-regulated – green; 28 upregulated – red).
doi:10.1371/journal.pone.0020763.g004
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the lesioned hemisphere of animals without seizures. Therefore,

these data demonstrate that genes in the yellow module are

consistently upregulated within the epileptogenic region, as

hypothesized based on our bio-informatic analyses.

Because several of the highly connected genes within the yellow

module are expressed in glial cell sub-types, we hypothesized that

this module was related to glial rather than neuronal changes

within hippocampus. To move from whole tissue to cell type level

analysis, we compared the composition of the yellow module to

two previously published resources that explored gene expression

within specific cell types. The first resource was a database that

examined gene expression within the three major cell types in the

Table 3. Candidate genes associated with epileptogenicity.

Function Symbol Gene title Change

Signaling Hcrt Hypocretin q

Ccl4 Small inducible cytokine a4 q

Kcnj13 Potassium inwardly rectifying channel, subfamily J, member 13 q

Carhsp1 Calcium regulated heat stable protein 1 q

Rasd2 RasD family, member 2 q

Ptgds Prostaglandin D2 synthase q

Ren1 Renin 1 q

Penk Preproenkephalin q

Bdnf Brain derived neurotrophic factor Q

Unc13c Unc-13 homolog Q

Grm4 Glutamate receptor, metabotropic 4 Q

Cart Cocaine and amphetamine regulated
transcript

Q

Olfm1 Olfactomedin 1 Q

Prg1 Plasticity regulated gene 1 Q

Slc30a3 Zinc transporter – Znt3 Q

Tac2 Tachykinin 2 Q

Comt Catechol-o-methyltransferase Q

Differentiation Mcam Melanoma cell adhesion molecule q

Txnip Upregulated by 1,25 dihydroxyvitamin D3 q

Fos FBJ murine osteosarcoma viral oncogene homolog q

Igfbp5 Insulin-like growth factor binding protein 5 q

Nnat Neuronatin q

Bok Bcl-2-related ovarian killer protein Q

Nr4a3 Neuron-derived orphan receptor Q

Rgd1359691 Hypothetical protein Loc287543 Q

Metabolism Loc311548 Similar to Riken cDNA 4930509O20 q

Eno2 Enolase 2, gamma q

Ca3 Carbonic anhydrase 3 q

Cyb5r2 Similar to cytochrome B5 reductase q

Cyp2d1 Cytochrome p450, family 2, subfamily D, polypeptide 9 q

Other Cdh19 Cadherin 19, type 2 q

Tmem10 Transmembrane protein 10 q

Samd14 Similar to cDNA sequence BC034054 q

Dnah1 Dynein, axonemal, heavy polypeptide 1 q

Rgd1310892 Similar to axoneme central apparatus protein q

Cd86 Cd86 antigen q

Samsn1 SAM domain, SH3 domain, and nuclear localization signals 1 q

Mucdhl Mucin and cadherin like q

Bcas1 Breast carcinoma amplified sequence 1 q

The 40 genes that are specifically differentially expressed within the epileptogenic region and whose expression changes are not due to the effects of the lesion or
seizures. These genes are grouped based on function from their associated GO categories. The arrows in the last column denote the direction of the expression changes
within the epileptogenic region. There were twelve genes that were significantly down-regulated, and these genes were either associated with signaling or
differentiation. The twenty-eight genes that were significantly upregulated within the epileptogenic region were spread out among all functional categories.
doi:10.1371/journal.pone.0020763.t003
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brain, including astrocytes, oligodendrocytes, and neurons [20].

We located all of the genes in the yellow module in this database of

gene expression and examined their expression by clustering the

genes based on their Euclidean distances. Notably, we found that

genes in the yellow module were consistently expressed in either

oligodendrocytes or astrocytes and that very few of the genes were

highly expressed in neurons (Figure 6a). To provide additional

support for this analysis, we used the original human data set that

provided the proof of principle demonstration that individual cell

type analysis is feasible using WGCNA in whole brain tissue [17].

In this analysis, the authors annotated each gene by calculating its

relationship, called kME, with each module representing a cell type.

For example, a gene with a greater kME with the neuronal module

would be considered a neuronal gene, whereas a gene with a

greater kME in the oligodendrocyte module would be considered

an oligodendrocyte gene. We calculated the average kME for all

genes in the yellow module within all of the cell type specific

modules identified in Oldham et al., (2008), and we compared

these values to random groups of genes and summarized the

average kME values as Z-scores (Figure 6b). Consistent with the

mouse data, we found that the genes within the yellow module had

significantly higher connectivity with modules representing

oligodendrocytes and astrocytes than by chance alone (p,1e-33

& p,1e-10).

These analyses indicate that this module largely corresponds to

protection against oxidative stress in oligodendrocytes and

astrocytes. The upregulation of genes involved in the anti-oxidant

response suggests that there is ongoing oxidative stress in the

lesioned hippocampus of animals with seizures, but not in animals

that did not develop seizures. Therefore, these data represent the

pathological processes that are associated with epileptogenicity

and implicate glial dysfunction and response to oxidative stress as

key components of this process.

Chronic seizures cause dysregulation of synaptic vesicle
trafficking within neurons
We identified ten modules whose MEs were correlated with the

effect of chronic seizures on the brain. Here, we focused on the

blue module because it was the most highly correlated with the

effects of seizures, although the ME demonstrates substantial

biological variability between animals (Figure 7a). GO analysis

demonstrated that the blue seizure-related module was highly

enriched in genes involved in protein transport (p = 4.35e-7) and

synaptic transmission (p= 0.014) (Table S9). These data are

consistent with the differential expression analysis that suggested

altered neurotransmission and show that the expression changes in

genes involved in transport are co-regulated in the brain with

chronic seizures. Within the blue module, Arf1 is the most highly

connected gene in the module (Figure 7b), and it is upregulated to

a similar degree in both the lesioned and non-lesioned hippocam-

pi. Arf1 plays a role in vesicular trafficking and is specifically

involved in synaptic vesicle biogenesis [29]. Previously, we

Figure 5. Yellow co-expression module contains genes upre-
gulated in the epileptogenic region. Using WGCNA, we identified
the yellow co-expression module that contained genes that were
specifically upregulated in the lesioned hippocampus of animals with
seizures. a) Heatmap of expression within the yellow module, where
each sample represents a column and genes are displayed in the rows.
Expression is scaled for each gene, where red denotes that the gene is
highly expressed in that sample and green denotes low expression.
Below the heatmap is the ME that depicts the average gene expression
throughout the module, and it demonstrates that the genes in this
module are mostly upregulated in the lesioned hippocampus of
animals with seizures. b) Network plot using VisAnt that shows the top
three hundred connections within a module, where connection

strength is calculated by TO [26]. The central positions of several genes
are illustrated by this plot, including Nfe2l2 and Rdx. c) Barplot showing
fold changes in expression for six genes within the yellow module using
qRT-PCR. The y-axis represents the fold changes between the right
(lesioned; red) and left (non-lesioned; blue) hemispheres in epileptic
and non-epileptic animals separately. Fold changes from the microarray
data are shown for comparison. All genes show significantly higher
levels of expression in the lesioned hemisphere of animals with seizures,
while there was no significant change in animals without seizures
(p,0.05). b-actin was used as a loading control for qRT-PCR. Error bars
represent the standard deviation.
doi:10.1371/journal.pone.0020763.g005
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observed that differentially expressed genes due to chronic seizures

were involved in synaptic transmission (Table 4), and these data

suggest that the blue module likely reflects alterations in synaptic

vesicle trafficking.

We then confirmed the up-regulation of several hub genes

within the blue co-expression due to the effect of chronic seizures.

These genes included Arf1 (kME=0.97), Ppp2ca (kME=0.97), Rab5b

(kME=0.97), Ppm1a (kME=0.92), and Pam (kME=0.92). We

compared the expression of each of these genes between animals

with seizures and animals without seizures. Expression in the

lesioned hemisphere and non-lesioned hemisphere was compared

independently, and we found that each gene was significantly

upregulated due to the effect of chronic seizures in both

hemispheres (Figure 7c). These data confirm the increase in

expression of these genes observed with the microarrays.

We then tested whether the genes that were upregulated due to

seizures represented neuronal gene expression because many were

involved in synaptic transmission. Using the same methods that

were described for the yellow module above, we examined the cell

types represented by the blue module. We identified all of the genes

within the blue module in the database of gene expression in brain

cell types [20], and we clustered these gene expression data based on

the Euclidean distance between genes. This analysis revealed that

the majority of the genes were highly expressed in neurons, while

they were not consistently expressed in glial cell types (Figure 8a). To

confirm these results, we examined the connectivity of the genes

within the blue module to the cell type specific modules identified in

human brain [17]. We observed significantly higher connectivity of

the genes within the blue module to the module that represents

neurons than by chance alone (Figure 8b; p,1e-10). These data

extend the standard analysis of differential expression to demon-

strate that the effects of chronic seizures cause dysregulation of

synaptic vesicle trafficking within neurons.

To validate our hypothesis that the genes upregulated by

seizures would increase their expression specifically within

neurons, we used in situ hybridization to localize their expression

within the hippocampus. We found that Arf1 (kME=0.98), Ywhag

(kME=0.92), Ppm1a (kME=0.97), and Ppp2ca (kME=0.92) all

showed moderate to high expression within the granule cell layer

of the dentate gyrus in both epileptic and non-epileptic animals

(Figure 8c). Therefore, these data validate our hypothesis that the

blue co-expression module represents the neuronal response to

chronic seizures in the brain.

Mechanisms of neuronal response to seizures
The transcriptional changes due to seizures that are represented

by the blue module may be caused by differences in transcriptional

activation or changes in RNA processing. Since the RNA binding

protein HuD has previously been suggested to contribute to the

neuronal response to seizures [30], we investigated whether there

was an over-representation of known targets of HuD [31].

Strikingly, among the genes that had high connectivity within

the blue module (kME.0.70), there was a highly significant over-

representation of HuD targets (p = 2.12e-18), suggesting that HuD

could play a role in regulating the transcripts within this module.

To confirm that the expression of HuD was increased due to

chronic seizures in this animal model, we performed qRT-PCR

and found that HuD was significantly upregulated in both

hemispheres of animals with seizures when compared to animals

without seizures (Figure 9a).

We then hypothesized that targets of HuD would be

upregulated due to seizures because HuD is known to bind to

Figure 6. Co-expression module up-regulated within epileptogenic region contains genes expressed in glial cells. Using two resources
of cellular specific expression, we examined whether the yellow module was enriched in genes that are expressed within glial cell types. a) Heatmap
of genes in the yellow module using data extracted from a database of gene expression in oligodendrocytes, neurons, and astrocytes [20]. Samples
are denoted across the columns and each row represents the scaled expression of a gene, where red and green signify higher and lower expression,
respectively. The dendrogram was constructed by clustering the genes based on their Euclidean distance. b) Barplot showing the comparison of the
yellow module to a resource that associates genes with modules using a connectivity value (kME), where some of the modules have been shown to
represent specific cell types [17]. For each module, we compared the average connectivity within the cell type specific modules of all genes in the
yellow module to the average connectivity in these modules of a random group of genes. We expressed this comparison as a Z-score (shown in the
barplot). There was significantly higher connectivity found in the modules that corresponded to astrocytes and oligodendrocytes than what would
be expected by chance (p,1e-33 & p,1e-10).
doi:10.1371/journal.pone.0020763.g006
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the 39 UTR of its target genes and stabilize those transcripts

[32,33]. Therefore, we used Gene Set Enrichment Analysis [34] to

determine whether previously identified targets of HuD [31] were

up-regulated due to seizures. We found that this group of genes

significantly corresponded to the effect of seizures (Figure 9b;

p,0.01). These data demonstrate that the increase in HuD

expression is accompanied by an increase in the functional

consequences of the molecular functions of HuD.

Another known molecular function of HuD is the ability to

interact with polyadenylation machinery and bias this process

towards longer transcripts [35]. Therefore, we carefully examined

the specific targets of all of the probes that interrogate HuD target

genes. We found that probes targeting regions 39 to known

polyadenylation sites in HuD target genes were significantly more

highly connected within the blue module than probes targeting

regions 59 to known polyadenylation sites in HuD target genes

(p,0.001; Figure 9c). These data suggest that the up-regulation of

HuD expression acts to bias polyadenylation site usage within its

target genes. In addition, the high connectivity of target genes

demonstrating altered polyadenylation provides a mechanism by

which this HuD-mediated process likely contributes to the

underlying regulation of the blue module.

Epilepsy-specific changes in the synaptic vesicle
trafficking module
Because the blue module was enriched in neuronal genes and

synaptic vesicle trafficking is common to all neurons, we

hypothesized that this module should be present in other data

sets; thus, finding such co-expression relationships independently

would provide another level of validation of this module. We

examined two different microarray datasets that examined gene

expression in non-epileptic samples. The first dataset contained

gene expression data from specific neuronal sub-types [36], and we

used this dataset because the modules have previously been related

to well-defined neuronal characteristics, permitting their annota-

tion [18]. The second dataset contained gene expression data from

the dentate gyri of animals involved in a learning study, and we

used this dataset because the samples were comparable to our the

tissue used in the current study [37]. We identified a module in

each dataset that were enriched in genes involved in protein

trafficking (p= 2.1e-6 & p=2.5e-9) and had Arf1 as a hub

(kME=0.91 & kME=0.89). To determine whether these modules

were truly comparable, we compared the top five hundred most

highly connected genes in the epileptic seizure-related module and

both of the non-epileptic modules, and we found a highly

significant overlap in both comparisons (p,1.0e-10). These data

both validate the co-expression relationships that we have

identified using totally independent data sets and demonstrate

that the functions of these modules are comparable. To determine

whether connectivity within the seizure-related module was

conserved, we compared the connectivity (kME) of each gene in

the seizure-related module to the conserved module of both non-

epileptic datasets (Figure 10a). We observed a significant

correlation between individual gene connectivities within each of

these modules (p,1e-16), but there was a noticeable skewing of

connectivity towards higher values in the epileptic module. These

data suggest that some genes that had lower connectivity in normal

animals have become more central in epilepsy. Interestingly, Sv2a,

Table 4. Hub genes within blue module differentially expressed due to seizures in both hippocampi.

Symbol Name kME Lesioned Non-lesioned

Arf1 ADP-ribosylation factor 1 0.978 0.0076 0.0091

Rab5b Rab5b, member ras oncogene family 0.973 5.2e-5 4.9e-5

Phospho2 Phosphatase, orphan 2 0.973 0.035 0.016

Ppp2ca Protein phosphatase 2a, catalytic subunit, alpha 0.973 0.015 0.006

Zfp207 Zinc finger protein 207 0.972 1.4e-4 4.0e-4

Copa Coatomer protein complex subunit alpha 0.972 0.0013 8.4e-4

Maea Macrophage erythroblast attacher 0.972 0.018 0.062

Sumf1 Sulfatase modifying factor 1 0.971 0.011 0.0094

Ube2d3 Ubiquitin conjugating enzyme E2D3 0.970 0.022 0.014

Hnrnpc Heterogeneous nuclear ribonucleoprotein C 0.970 4.9e-4 5.4e-4

The top ten most highly connected genes within the blue module and the significance (p-values) of their expression changes due to seizures in the lesioned and non-
lesioned hemispheres. Genes within the table are ranked based on their kME within the blue module. For each gene, the last column shows the effect of seizures, which
is the comparison between the animals with seizures and the animals without seizures. This comparison was performed separately in the lesioned and non-lesioned
hippocampi, and the results of both analyses are shown in the table. All of these genes show similar trends towards differential expression in both the lesioned and non-
lesioned hippocampi, demonstrating that their expression changes are likely caused by presence of seizures and are unrelated to the lesion.
doi:10.1371/journal.pone.0020763.t004

Figure 7. Co-expression module corresponding to effects of seizure suggests synaptic changes. The blue module contains genes that
were upregulated in both hippocampi of animals with seizures. a) Heatmap of gene expression within this module, where samples are denoted
across the columns and the genes are displayed in the rows. The barplot displays the ME that summarizes gene expression within the module.
Although there is biological variability between the epileptic animals, these genes were mostly upregulated due to seizures regardless of lesion. b) In
order to identify and highlight the most highly connected genes within the network, we plotted the top three hundred connections based on TO.
The central position of Arf1 within this module is clear, as well as three other genes Phospho1, Maea, and Ube2h. c) Barplot summarizing the fold
changes of hubs within the blue module due to seizures in the lesioned (orange) and non-lesioned (blue) hemispheres, as measured by qRT-PCR. Fold
changes calculated from the original microarray data are also shown for comparison. Each gene shows significantly higher levels of expression in
animals with seizures than animals without seizures, regardless of hemisphere (p,0.05). b-actin was used as a loading control for qRT-PCR. Error bars
represent the standard deviation.
doi:10.1371/journal.pone.0020763.g007
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Figure 8. Blue module related to chronic seizures contains genes expressed in neurons. Due to the enrichment in synaptic functional
categories of the yellow module, we examined the genes within the yellow module to determine whether they were enriched in neurons, using the
same methods described for the yellow module (above). a) The expression values from the database of cellular gene expression [20] for the genes
within this module were clustered based on Euclidean distance and displayed in the heatmap. The samples are denoted in the columns and the rows
corresponded to the scaled expression of each gene, where red and green represent higher and lower expression, respectively. This heatmap shows
that a majority of these genes are enriched in neurons, suggesting that neuronal gene expression is altered by seizures. b) We then used a second
dataset a cell specific gene expression to examine the module from another perspective [17]. For each cell type specific module, we compared the
average connectivity of the genes within the blue module to a random group of genes and expressed this comparison as a Z-score, which is shown in
the barplot. We found that the blue module had over-represented connectivity with the neuronal modules, especially within the cortical neuron
module (p,1e-10). c) To examine the expression of the genes within the seizure module directly, we used in situ hybridization. We examined the
expression of Ywhag (kME= 0.92), Arf1 (kME= 0.98), Ppm1a (kME=0.97), and Ppp2ca (kME=0.92) in the non-lesioned hemisphere of animals with (left)
and without epilepsy (right). For each of these genes, there was little background signal, as examined using sense probes for each gene (Figure S2).
Each gene was expressed within the neuronal layer of the dentate gyrus in animals with epilepsy, which is consistent with our hypothesis. Scale
bar = 500 mm.
doi:10.1371/journal.pone.0020763.g008
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Figure 9. Involvement of HuD in regulating expression of genes within the yellow module. We examined the expression and role of HuD
in modulating the response of neurons to chronic seizures. a) Barplot summarizing the fold changes of HuD within the blue module due to seizures in
the right (lesioned) and left (non-lesioned) hemispheres separately. HuD shows significantly higher levels of expression in animals with seizures than
animals without seizures, regardless of hemisphere (p,0.05). b-actin was used as a loading control for qRT-PCR. Error bars represent the standard
deviation. b) Enrichment plot of HuD target genes showing their concordance with chronic seizures. The x-axis represents the list of genes that is
ranked by their correlation with the seizure phenotype, where the red area denotes positive correlation with seizures and the blue area denotes
negative correlation with seizures. The black lines on the x-axis show the location of the HuD target genes within the list of genes ranked by their
correlation with seizures. The y-axis represents the enrichment score of HuD target genes within the ranked list of genes. This plot demonstrates that
HuD targets show a significant correspondence with the effect due to chronic seizures (p,0.01). c) Boxplot showing the connectivity for probes
interrogating regions 59 to known polyadenylation sites and 39 to known polyadenylation sites. The y-axis shows the distribution of connectivity (kME)
for the different groups of probes, where the thick black line represents the mean, the box represents one standard deviation, and the dotted lines
represent three standard deviations. Probes that target regions that are 39 to known polyadenylation sites demonstrate significantly higher
connectivity than other probes that target regions that are 59 to known polyadenylation sites (p,0.001).
doi:10.1371/journal.pone.0020763.g009

Figure 10. Genes involved in synaptic vesicle trafficking become more highly connected in epilepsy and are possible drug targets.
We examined whether the seizure network was conserved across other datasets, using two published gene expression datasets. a) Histogram of
differences in connectivity within the synaptic vesicle trafficking module between different gene expression studies, including our study of epilepsy, a
study of expression in specific neuronal sub-types from mice (WTMouse) [36], and a study of expression within the non-epileptic dentate gyrus from
rats (WTRat) [37]. The x-axis represents the connectivity difference is the difference in kME between the studies that are denoted on the legend. The y-
axis represents the normalized number of genes that demonstrate the indicated connectivity difference. b) Network plot of the fifty closest genes to
both Arf1 and Sv2a, which were identified using the multi-point topological overlap measure [39]. Genes marked in red are known to be involved in
vesicular transport or present in synaptic vesicles based on annotations from GO. For genes that had probes targeting the same exon in the epileptic
and normal networks, we calculated the difference in kME between these networks and displayed these values on the network plot. Higher values
demonstrate that the gene has become more important within the module, suggesting that it has gained a more substantial role in synaptic vesicle
trafficking in neurons subject to seizure activity.
doi:10.1371/journal.pone.0020763.g010
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a synaptic vesicle glycoprotein and the molecular target of

levetiracetam [38], has a much higher connectivity in the epileptic

network (kME=0.76), than in the non-epileptic modules

(kME=0.04 & kME=0.52). These data suggest that Sv2a has

gained a more important role in synaptic function in epilepsy than

under normal conditions.

We hypothesized that other genes involved in synaptic vesicle

trafficking that have high connectivity in the epilepsy network, but

low connectivity in the normal network are possible drug targets

for epilepsy. We further investigated this hypothesis using a

measure called multi-point topological overlap [39], which

identifies the nearest neighbors to a specific gene recursively

based on their TO with the gene of interest. We identified the fifty

nearest gene neighbors to Sv2a and Arf1 using gene expression

from epileptic animals (Figure 10b). Using GO, we found that this

group of genes was enriched for genes localized to vesicles

(p = 0.012). We then calculated the average difference in

connectivity (kME) in the epileptic and non-epileptic networks for

each gene that had probes that targeted the same exon. We used

this difference to prioritize the genes because genes that had large

differences in connectivity between the networks were likely to be

very important for the pathological processes that occur in chronic

epilepsy (Table 5). For example, Nck1 and Necap1 are both known

to be involved in vesicle trafficking [40,41], and both are

connected much more highly in the epileptic network than in

the normal network. Therefore, these genes are anti-epileptic drug

targets because we predict that they increase in importance under

epileptic conditions and are part of the same pathway as the

known drug target, Sv2a. However, there are other genes that are

also highly dysregulated, but are not known to function in synaptic

vesicle transport, such as Ppp2ca. These genes also warrant further

study into both their possible role in synaptic vesicle trafficking, as

well as the possibility that they are drug targets for epilepsy.

Discussion

Here, we performed a genome-wide analysis of transcriptional

changes in the KA lesion model of MTLE. By controlling for the

effects of the initial neurotoxic hippocampal lesion, the study

design allowed the identification of gene expression changes

associated with epileptogenicity and homeostatic effects induced

by seizures. Using differential expression analysis, we found that

expression changes associated with epileptogenicity were impor-

tant for neuronal survival and function, while chronic seizures

caused changes in genes related to synaptic transmission. We

examined these effects further using WGCNA and identified

modules of highly co-expressed genes that corresponded to effects

of epileptogenicity and seizures. The module that best corre-

sponded to epileptogenicity suggested an increase in pathways that

prevent damage due to oxidative stress in glial cells, extending the

findings from the differential expression analysis and highlighting

the role of glia in neuronal survival. We also examined another

module that corresponded to the effects of chronic seizures on the

brain, which may reflect homeostatic changes in response to

seizure activity. This module contained genes involved in synaptic

vesicle trafficking that were dysregulated in neurons from epileptic

tissue. Notably, one hub within this module was the molecular

target of levetiracetam, Sv2a [38], which suggests that pathways

Table 5. Genes that displayed enhanced connectivity in epileptic vs. normal neurons.

Symbol Gene title Agilent Sugino et al. Burger et al.

Mrps25 Mitochondrial ribosomal protein S25 0.955 0.091 0.052

Prim1 DNA primase p49 subunit 0.944 0.043 0.088

Phospho2 Phosphatase, orphan 2 0.961 0.161 0.022

Hnrnpc Heterogeneous nuclear ribonucleoprotein C 0.972 0.187 0.044

Dctn4 Dynactin 4 0.951 0.103 0.109

Pbx2 Pre B-cell leukemia transcription factor 2 0.938 0.076 0.114

Caprin1 GPI anchored membrane protein 1 0.950 0.032 0.190

App Amyloid beta (A4) precursor protein 0.881 0.069 0.018

D3ucla1 DNA segment, Chr 3, UCLA 1 0.949 0.119 0.110

Pygb Brain glycogen phosphorylase 0.892 0.091 0.034

Zadh2 Zinc binding alcohol dehydrogenase, 2 0.843 0.014 0.014

Socs7 Suppressor of cytokine signaling 7 0.905 0.100 0.085

Cdc5l Cell division cycle 5-like 0.858 0.030 0.081

Parva Parvin, alpha 0.802 0.003 0.002

3110048E14Rik Riken cDNA 3110048E14 gene 0.829 0.033 0.051

Cdc42ep4 Cdc42 effector protein 4 0.914 0.050 0.207

Ngrn Neugrin, neurite outgrowth associated 0.950 0.301 0.029

Nsg1 Neuron specific gene family member 1 0.901 0.136 0.106

Calm1 Calmodulin 1 0.906 0.003 0.255

Tmem93 Transmembrane protein 93 0.886 0.142 0.080

The top twenty genes that displayed the largest differences in connectivity between gene expression networks in epileptic and normal neurons. Three datasets were
used to determine whether genes within the blue module displayed enhanced connectivity when compared to normal neuronal gene expression, including the Agilent
data from the current study, a study of gene expression within normal neuronal sub-types [36], and a study of gene expression from the non-epileptic dentate gyrus
[37]. Equivalent modules were identified in each dataset, and the connectivity (kME) for genes that had probes targeting the same exon was compared in all modules.
The values of connectivity are displayed in the table for the most differentially connected genes.
doi:10.1371/journal.pone.0020763.t005
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implicated by this module can modulate seizure activity and that

other genes within this module are potential anti-epileptic targets.

One limitation of this study is that the animals in the gene

expression studies were classified by observing convulsive seizures

on video monitoring, but electrophysiological recordings were not

conducted on the same group of animals. Thus, it is possible that

animals in the non-epileptic gene expression group may have had

non-convulsive seizures that could not be observed by video

monitoring. This leads to the possibility that our control group

may have been contaminated with animals that display some

degree of electrophysiological seizure activity. In light of this

possibility, we used WGCNA to obtain an unbiased perspective of

the gene expression patterns present in all samples, and we found

that none of the individual non-epileptic animals shared

expression patterns with the epileptic animals. Therefore, it does

not appear that gene expression in our control group was

substantially affected by non-convulsive seizure activity. Alterna-

tively, the expression changes observed in the epileptic animals

may represent neuronal responses to chronic, recurrent convulsive

seizures that were not engaged by non-convulsive seizures. Further

studies with detailed electrophysiological characterization will be

required to definitively associate these molecular and physiological

changes.

Comparison of our data to previous studies was useful in

contextualizing our results in terms of previously observed effects

in animal models of MTLE. One major review of gene expression

studies in epilepsy identified fifty-one consistently differentially

expressed genes [42], and another large study of gene expression

changes in kindled animals found 180 differentially expressed

genes [12]. Expression changes reported by Lukasiuk and

Pitkanen, (2004) overlapped with the differentially expressed genes

due to the lesion in animals with seizures (n = 12 genes), but there

was no overlap with either the epileptogenicity candidate genes or

the epileptogenicity module. These data suggest that lesion-

induced gene expression changes may have confounded the

previous studies in this review. Genes found by Gorter et al.,

(2006) also had the largest overlap with differentially expressed

genes due to the lesion in animals with seizures (n = 44 genes), but

a subset of these genes overlapped with both the epileptogenicity

candidate genes (n = 5 genes; Bdnf, Fos, Grm4, Ptgds, and Unc13c)

and the epileptogenicity module (n = 8 genes; Anxa1, Dbi, Fos, Ftl1,

Hmox1, Mgst1, Prkcd, and Sdc4). These data demonstrate that there

are consistently differentially expressed genes due to epileptogeni-

city, which validates several of the changes observed in this study.

The first major goal of this study was to identify gene

expression changes associated with the ability of the epileptogenic

region to initiate spontaneous seizures or epileptogenicity. Using

differential expression analysis, we found that lesion-induced

changes were present in animals with and without epilepsy but

that these changes were more dramatic in animals with seizures.

Although we initially found that the lesions were grossly similar,

these data suggest that the lesions were distinct molecularly. After

correcting for lesion-induced changes, we identified forty

candidate genes associated with epileptogenicity that were

enriched for genes involved in neuronal survival. Interestingly,

one candidate gene that was significantly upregulated in the

epileptogenic region was Fos, which was also differentially

expressed in Gorter et al., (2006). Fos is a transcription factor

that immediately increases expression in response to seizure

activity [43], and animals with a deletion of Fos demonstrated

increased severity of KA-induced seizures and increased hippo-

campal cell death [44]. In addition, Fos has been shown to

upregulate neuronal protective factors such as Bdnf [45], which is

another epileptogenicity candidate gene in our analysis. In

contrast to Fos, however, Bdnf was down-regulated in the

epileptogenic region. This decrease in Bdnf expression has been

described in other models of chronic epilepsy [46]. In addition,

other neuropeptides, Tac2 and Cart, were among the down-

regulated epileptogenicity candidate genes, and these genes have

roles in regulating both neuronal activity and survival [47,48].

These data suggest that cells within the epileptogenic region are

exposed to stressful conditions without a concomitant upregula-

tion in factors that lead to survival. Therefore, we hypothesize

that ongoing neuronal injury or death is associated with

epileptogenicity.

We then used WGCNA to examine these important genes and

processes associated with epileptogenicity from a systems perspec-

tive. The ME for the yellow co-expression module had the greatest

correlation with epileptogenicity, although there was one animal

without seizures that displayed up-regulation of these genes, which

suggests that this animal may have had seizure activity without

observable epilepsy. In addition, one of the epileptogenicity

candidate genes, Fos, was highly connected within this module

(kME=0.85), providing further validation of these genes using

another analytic method. The most highly connected gene within

this module was the transcription factor Nfe2l2 that is involved in

the coordination of multiple different pathways that are protective

against oxidative stress [27]. In addition, we found that the genes

within the yellow module were mostly expressed in glia. Therefore,

we hypothesized that this module may be related to epileptogeni-

city in a direct manner by altering the cellular composition of the

lesioned area or in an indirect manner by signaling chronic

oxidative stress.

The differential expression and network analyses make specific

predictions about the processes and cell types that are altered in

the epileptogenic region, which may provide insight into the

mechanisms underlying epileptogenicity. It has been shown that

there is increased glial differentiation from progenitor cells within

the subgranular zone in KA-treated animals with spontaneous

seizures [49]. This difference in cellular differentiation may be

caused by changes in the cellular microenvironment [50], which

we also observed through the differential expression of several

neuropeptides. In addition, Nfe2l2 knockout mice develop

widespread astrogliosis and myelin degeneration, suggesting that

Nfe2l2 plays a role glial survival [28]. However, animals with a

deletion of Nfe2l2 are more susceptible to KA-induced seizures

than wild-type animals [51]. These data suggest that production or

protection of glial cell types is likely not involved in epileptogeni-

city, and therefore, the upregulation of this co-expression module

is more likely secondary to chronic oxidative stress, which has been

observed in this animal model [52]. Oxidative stress could account

for the changes associated with neuronal injury identified in the

differential expression analysis and has been shown to play a role

in epileptogenicity. For example, mice that are heterozygous for a

deletion in Sod2 are more susceptible to KA-induced seizures and a

subset of animals develops spontaneous seizures [53]. Oxidative

stress is thought to increase epileptogenicity by inhibiting high

affinity glutamate transporters in neurons and glia [53,54], which

are known to be sensitive to reactive oxygen species [55].

Therefore, these unbiased, genome-wide data lend support to

the idea that the presence of oxidative stress, suggested by chronic

upregulation of Nfe2l2 within the lesioned hippocampus, may be a

key biochemical feature responsible for epileptogenicity within that

region.

Another goal of this study was to identify homeostatic responses

to seizure activity that may be protective in epilepsy. Analysis of

differential expression showed that the transcriptional response to

seizures in the non-lesioned hippocampus was large and essentially
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equivalent to the response to seizures in the lesioned hippocampus.

Although it intuitively makes sense that homeostatic responses to

chronic, generalized seizures would affect both hippocampi

equally, there are few studies that examine this phenomenon.

For example, it has been shown that the expression of several

neuropeptides is changed in non-lesioned hemisphere in the

intrahippocampal KA animal model [56]. In addition, Vglut1 can

be upregulated in both hemispheres by a unilateral epileptogenic

lesion [57], suggesting that seizure-induced synaptic plasticity is

not restricted to the epileptogenic region. Consistent with these

data, we observed that many genes involved in synaptic vesicle

trafficking were differentially expressed due to seizures. Previous

studies have shown that there is a redistribution of synaptic vesicles

within the nerve terminal due to chronic seizures with vesicles

shifted closer to the active zone [58]. In addition, the readily-

releasable pool of glutamate has also been shown to be increased

in the mossy fiber terminals of animals with epilepsy [59].

Therefore, these functional synaptic alterations that occur in

response to epilepsy may be related to the gene expression changes

that we observed.

To examine this phenomenon further, we investigated the blue

module that was related to chronic seizures in both hippocampi,

although there was substantial variability between animals, which

could have been caused by a number of variables (ie. latency from

last seizure, seizure frequency). This module was enriched in genes

involved in synaptic transmission, and the most highly connected

gene within this module was Arf1, which is a small GTPase that is

involved in synaptic vesicle formation and trafficking [29,60]. The

main pathway represented by the blue module involves synaptic

vesicle recycling, as Arf1 is known to interact with the AP-3

complex and stimulate vesicle budding from the endosome [61].

Interestingly, it has been shown that neurons appear to have two

simultaneous vesicle re-formation pathways [62], and Arf1 is

thought to be responsible for one of these endocytic processes [63].

Vesicles generated using Arf1 and AP-3 have been shown to have

unique properties and have altered release characteristics [64,65].

By comparing out data with other datasets, we found that this hub

gene (Arf1) and module were conserved but that the connectivity of

many genes was increased in the epileptic module, suggesting that

genes present in the blue module have gained new importance in

the neurons of epileptic animals. These data lead to the hypothesis

that granule cells in the dentate gyrus have altered synaptic vesicle

retrieval because of an increased reliance on the Arf1 and AP-3

dependent endocytic pathway, which could lead to changes in

neurotransmission.

Several molecules and pathways may be involved in the

underlying regulation of the genes within the blue module, but we

identified one RNA binding protein, HuD, that may contribute

significantly to these processes. However, we cannot discount other

members of the Hu family. In fact, one previous study identified

several hundred mRNAs that bind to HuR after pentylenetetrazol

induced seizures [66]. We found a significant overlap between genes

in the seizure module and these HuR targets (p= 2.11e-4), although

this degree of overlap was than that of the HuD targets. The HuD

protein has three RNA recognition domains that bind specifically to

AU richmotifs that are present within the 39UTRmany genes [32].

Functionally, over-expression of HuD within the hippocampus has

also been shown to alter short and long-term plasticity, demon-

strating that HuD can modulate neurotransmission [67,68].

Although stabilization and increased translation of synaptic genes

throughHuD bindingmay cause these changes in synaptic function,

alterations in polyadenylation site usage could also play a role.

Many genes have multiple possible polyadenylation sites in the 39

UTR, and transcripts terminated at different sites can have different

functions [69]. For example, Bdnf has two known polyadenylation

sites, leading to two populations of mRNA with different lengths

[70]. Interestingly, only the longer transcript was found to be

transported into the dendrites, and mice that lacked the longer

isoform had dysmorphic dendritic spines and changes in synaptic

physiology [70]. Therefore, alternative polyadenylation site usage of

genes involved in synaptic vesicle trafficking due to seizures could

alter their characteristics or function in several different ways, and

these changes can modulate neuronal physiology and synaptic

transmission.

Identification of gene expression changes caused by epilepsy

and unassociated with epileptogenicity could provide important

insights into natural neuronal mechanisms that alter neurotrans-

mission, and these changes could represent a homeostatic, anti-

epileptic response that limits seizure activity. Our data suggest that

genes upregulated due to seizures may regulate neuronal

excitability through effects on vesicular trafficking. Indeed, one

of the hub genes within this module, Sv2a, is the target of the anti-

epileptic drug levetiracetam and disruption of this gene causes

seizures in mice [38,71]. Although the function of Sv2a is not

completely understood, it is localized to synaptic vesicles and

influences neurotransmitter release by playing a role in vesicle

priming [72], which are both related to the overall function

associated with the module. These data suggest that modulation of

pathways represented by this module can alter seizure activity and

other genes within this module could be anti-epileptic drug targets.

Few studies have attempted to identify drug targets from co-

expression networks, but hub genes are thought to be the most

efficient targets causing widespread network disruption [73,74].

One study demonstrated that knockdown of hub genes in a specific

type of brain cancer caused inhibition of cell division [75]. In

addition, we have shown that the co-expression relationships that

are defined by WGCNA reflect real, predictable changes that

occur in vivo when hub genes are disrupted [18]. Therefore, hub

genes in the epileptic network are likely to be the most efficient

points of intervention within the module. Although current drug

targets have been shown to be highly connected in protein

interaction networks, they are also less likely to be essential for

survival [76]. These data demonstrate a necessary balance

between the importance of a gene in a pathological state and its

importance for cellular survival. Therefore, genes that displayed

lower connectivity in normal networks are likely to have more

favorable toxicity profiles. Taken together, these data suggest that

genes displaying increased connectivity in the epileptic network

compared to the normal networks would be ideal drug targets.

One such example is Necap1, a gene involved in synaptic vesicle

endocytosis [41] that displays enhanced connectivity in the

epileptic network. These data suggest that Necap1 and other hub

genes within the epileptic network are plausible therapeutic targets

for inhibiting epileptiform activity in MTLE.

In summary, we have comprehensively examined gene

expression changes in the KA model of MTLE. Our experimental

design allowed us to identify genes associated with epileptogeni-

city, the lesion, and the effects of chronic seizures on the brain,

which also permitted placing previous expression data in their

appropriate context. These data show that many previously

identified transcripts are related to confounding effects of the

lesion. By performing complementary analyses of both differential

expression and WGCNA at a genome-wide level, we were able to

examine the effects of epilepsy from a systems level perspective.

We found that glia and oxidative stress have prominent roles in

contributing to epileptogenicity. Another key finding of this study

was the identification and characterization of a homeostatic

response to seizures, which involves changes in genes related to
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synaptic vesicle trafficking. These genes represent important

alterations that affect the properties of synaptic transmission and

include the anti-epileptic drug target Sv2a. Therefore, we

hypothesize that these pathways associated with synaptic function

modulate epileptiform activity and that genes identified in these

analyses that are central to these processes represent plausible anti-

epileptic drug targets (Table 5).

Supporting Information

Figure S1 Network construction and modular organi-
zation. This dendrogram demonstrates a visual summary of the

clustering of genes based on topological overlap. The network

consists of approximately 11,000 genes that are assigned to 41

separate modules. A vertical line on the x-axis represents each

gene, and the genes are grouped based on their topological

overlap. The y-axis on the dendrogram represents the dissimilarity

between neighboring genes on the dendrogram. Branches on the

dendrogram represent co-expressed groups of genes (modules) that

are isolated using an automatic module detection algorithm and

assigned a color, which is shown on the horizontal bar below the

dendrogram.

(TIF)

Figure S2 In situ hybridizations of control sense
probes. Sense probes for Arf1, Ppp2ca, Ywhag, and Ppm1a1 were

used for in situ hybridization to show specificity of expression. In

situ hybridizations using sense probes were carried out on adjacent

sections to those that were used for antisense probes. Sense and

antisense probes were hybridized to sections under the same

conditions at the same time.

(TIF)

Table S1 Primers used for quantitative RT-PCR. This

table shows the primers that were used for quantitative RT-PCR

confirmation. The first column shows the gene symbol. The

second column shows the genomic location that was targeted. The

third column represents the forward primer in 59R39 direction.

The fourth column represents the reverse primer in 59R39

direction.

(XLS)

Table S2 Primer and probe sequences used for in situ

hybridization. This table shows the primer and probe sequences

that were used for in situ hybridization. The first column shows the

gene symbol. The second column shows the genomic location that

was targeted. The third column shows the primers in 59R39

direction that were used to clone the probe sequences. The fourth

column shows the entire probe sequence that was used for

hybridization.

(XLS)

Table S3 Summary of tissue samples used for micro-
arrays. This table summarizes the tissue samples that were used

for gene expression studies. The first column shows the animal

identifier. The second column denotes the results of the video

monitoring. The third column shows the hemisphere that the

sample was taken from. The fourth column shows the number of

sections that were used for mRNA extraction. The fifth column

shows thickness of the sections that were used. The sixth column

represents the concentration of mRNA that was extracted. The

seventh column shows the 260/280 ratio of the extracted mRNA.

The eighth column shows the results from the Agilent Bioanalyzer.

(XLS)

Table S4 Differentially expressed genes due to the
lesion in animals without seizures. This table summarizes

the genes that are differentially expressed between the lesioned

and non-lesioned hippocampi in animals without seizures. The

gene symbols, gene names, and Refseq identifiers are shown in the

first column. The probe on the Agilent platform and the fold

change and differential expression p-value for that probe is shown

in the fourth, fifth, and sixth columns. The probe on the Codelink

platform and the fold change and differential expression p-value

for that probe is shown in the seventh, eighth, and ninth columns.

(XLS)

Table S5 Differentially expressed genes due to the

lesion in animals with seizures. This table summarizes the

genes that are differentially expressed between the lesioned and

non-lesioned hippocampi in animals with seizures. The gene

symbols, gene names, and Refseq identifiers are shown in the first

column. The probe on the Agilent platform and the fold change

and differential expression p-value for that probe is shown in the

fourth, fifth, and sixth columns. The probe on the Codelink

platform and the fold change and differential expression p-value

for that probe is shown in the seventh, eighth, and ninth columns.

(XLS)

Table S6 Differentially expressed genes due to seizures

in the non-lesioned hippocampus. This table summarizes the

genes that are differentially expressed between lesioned hippo-

campi in animals with and without seizures. The gene symbols,

gene names, and Refseq identifiers are shown in the first column.

The probe on the Agilent platform and the fold change and

differential expression p-value for that probe is shown in the

fourth, fifth, and sixth columns. The probe on the Codelink

platform and the fold change and differential expression p-value

for that probe is shown in the seventh, eighth, and ninth columns.

(XLS)

Table S7 Differentially expressed genes due to seizures

in the lesioned hippocampus. This table summarizes the

genes that are differentially expressed between the non-lesioned

hippocampi in animals with and without seizures. The gene

symbols, gene names, and Refseq identifiers are shown in the first

column. The probe on the Agilent platform and the fold change

and differential expression p-value for that probe is shown in the

fourth, fifth, and sixth columns. The probe on the Codelink

platform and the fold change and differential expression p-value

for that probe is shown in the seventh, eighth, and ninth columns.

(XLS)

Table S8 Functional annotation of the module associat-

ed with epileptogenicity. Enriched GO categories for the

genes present within the yellow module that was specific to the

epileptogenic region. The first column shows whether the

categories are associated with a biological process, cellular

component, or molecular function. Specific, enriched functional

categories are shown in the second column. The third and fourth

columns show the number and percentage of genes in the module

that are associated with the specific term. The fifth column shows

enrichment p-value.

(XLS)

Table S9 Functional annotation of the module associat-

ed with the effect of seizures. Enriched GO categories for the

genes present within the blue module that corresponded to both

hippocampi that were subject to seizures. The first column shows

whether the categories are associated with a biological process,

cellular component, or molecular function. Specific, enriched

functional categories are shown in the second column. The third

and fourth columns show the number and percentage of genes in
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the module that are associated with the specific term. The fifth

column shows enrichment p-value.

(XLS)
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