The Scientific Side of Medical Marijuana

Ken Mackie, MD
Indiana University
Bloomington, IN
December 3, 2009

kmackie@indiana.edu

Financial disclosures

- -NIH (NIDA) research grants
- -Alzheimer's Association research grant
- -Abbott Consulting
- -Bristol Meyers Squibb Consulting
- -Cara Therapeutics Consulting
- -Sanofi Consulting

Outline

- •Introduction to cannabis and cannabinoids
- Overview of cannabinoid pharmacology relevant to medicinal uses
- •Oral Δ ⁹THC vs cannabis: Scientific considerations

Cannabis: A primer

- -The plant: Cannabis, marijuana, etc.
 - Hemp vs psychoactive cannabis
- -Major psychoactive component, Δ^9 THC
- -However ~60 other compounds
 - Variability of constituents
- -Preparations
 - ·Raw, dried plant (F vs. M)
 - ·Flowers and buds
 - · Hashish
- -Inhalation
 - Smoked (burned-joint, pipe, waterpipe)
 - •Vaporizer (heat to release volatile compounds, ~200°C)
- -Ingestion
 - •Cooked into foods, extract Δ^9 THC into fats (butter)

Cannabis: Cannabinoid synthesis

- · CBG—cannabigerol
- · CBD—cannabidiol
- THC— Δ^9 tetrahydrocannabinol
- CBC—cannabichromene
- · CBN—cannabinol
- "V" suffix denotes propyl instead of pentyl side chain

From GW Pharma

Cannabinoid synthesis (overview)

Endocannabinoid system (ECS)

- Desire to understand the psychoactivity of cannabis contributed to a "Golden Era" of cannabinoid research during the 1980's-1990's
- This led to the discovery of the endocannabinoid system
- ·Receptors, ligands, metabolic enzymes

Endocannabinoid system (ECS)

- ·Endocannabinoids: 2-AG, AEA
- ·Major degrading enzymes: FAAH, MGL
- •Receptors: CB₁, CB₂, GPR55, ...

CB₁ cannabinoid receptors

- •Discovered & cloned in late 1980's
- Mediates most CNS actions of Δ^9 THC
- Richly expressed in brain, particularly in regions associated with cognition, emotion, perception, movement, etc.
- Low levels in brainstem, except emetic centers
- Lethal overdose extremely rare

Stephen Eggan & David Saffen, 2004

CB₁ is expressed on axons and terminals

CB₁-green, MAP2 (dendrites) red M. Myoga

CB₁ heavily expressed on some axons & terminals

CB₁ agonists inhibit neurotransmission

V_c

Typical experiment:

- ·Nervous tissue slice
- Patch clamp recording of synaptic inputs
- ·Bath apply drugs

Measure GABAergic currents in CA1

record

stimulate

CB₁ receptor activation inhibits neurotransmission

CB₁ agonists inhibit neurotransmission in the dorsal horn of the spinal cord

Modified from Farguhar-Smith, et al 2000

Modified from Morisset & Urban, 2001

CB₂ receptors

·Multiple modes of injury increase neuronal CB₂ expression

http://www.jneurosci.org/cgi/content/full/29/14/4564/F1

14 d post ligationMicroglia, too

7 d post hemicerebellectomy

Modified from Zhang, et al 2003

CB₂ agonists as analgesics

- CB₂ agonists are devoid of measurable psychoactivity
- ·CB₂ agonists show strong efficacy in multiple pain models
- •Need to consider actions of THC through CB2, too
 - •Inflame rat paw with carrageenan
 - •Treat or not with CB_2 agonist (AM1241) \pm CB_1 or CB_2 antagonist
 - Measure withdrawal threshold (higher threshold = more pain relief)

Nackley et al. 2003

CB₂ receptor agonists

- Neurons and microglia
- CB₂ activation decreases synaptic transmission
- Inducible—does this convey some unique therapeutic advantages?
- · Preclinical studies are very promising
- Bottom line: How do they work in humans?
- Are any of the therapeutic effects of medical marijuana mediated by CB₂ receptors?

Endogenous cannabinoids

- ·What do endogenous cannabinoids do?
- Preformed in membrane, liberated by activation of specific lipases
- Well positioned to function as feedback regulators of neuronal function
- ·Produced by neurons, astrocytes, microglia
- The effects of THC will be primarily determined by its interactions with endocannabinoids

Endocannabinoid system (ECS)

- ·Endocannabinoids: 2-AG, AEA
- ·Major degrading enzymes: FAAH, MGL
- ·Receptors: CB₁ & CB₂

Endocannabinoids inhibit neurotransmission

- Post-synaptic neuron makes endocannabinoids that act on CB1expressing presynaptic terminals
- Endocannabinoids are also produced by astrocytes and microglia

Bodor et al, 2005 (layer V)

Multiple forms of eCB-mediated plasticity

DSI/DSE

MSI/MSE

Slow-self inhibition (SSI)

Heterosynaptic eLTD

DSI = depolarization-induced suppression of inhibition

MSI = metabotropic-induced suppression of inhibition

Medical Marijuana

- -Cannabis as a therapeutic
 - ·Old idea, much support for some efficacy
 - •Cannabis vs synthetic Δ^9 THC
- -Features to consider:
 - Route of administration
 - Complex mix of chemicals
 - ·"Rebel" nature of the act
- -Most common indications
 - Pain (multiple, including spasticity)
 - Mood disorders (anxiety, depression)
 - •GI disturbances (including appetite stimulation)
 - ·HIV-related symptoms

Pharmacological approaches targeting cannabinoid receptors

- -Dronabinol (Δ ⁹THC in sesame oil)
- -Nabilone (Cesamet)
- -Sativex (standardized cannabis extract)
- -Medical marijuana

$$\Delta^9$$
THC Nabilone

Medical marijuana vs dronabinol

- -Components
 - •Dronabinol, Δ^9 THC in sesame oil
 - ·Cannabis, complex (& variable) mixture of chemicals
- -Pharmacokinetics
 - ·Oral
 - ·Slow
 - ·Variable
 - ·First pass metabolism
 - ·Inhaled
 - Rapid (self-titration)
 - ·Minimal first pass metabolism
 - ·Thermal isomerization
 - ·Effects of CBD on THC metabolism

Δ^9 THC metabolism

Inhaled vs oral route of administration

Inhaled

Oral

Variability in oral absorption between subjects (THC levels)

Time to peak effect and duration varies with route of administration

Inhaled vs oral route of administration

Inhaled

Oral

- Rapid peak THC
- •Higher peak (~3 fold)
- •THC > 11-OH-THC
- •Similar peak THC-COOH

- Delayed peak THC
- Lower peak (~1/3)
- •THC < 11-OH-THC
- •Similar peak THC-COOH

Cannabidiol modifies THC effects

5. Bhattacharyya et al, 2003

- Cannabidiol (CBD) often a major component of cannabis
- CBD has no overt psychoactivity
- Multiple studies suggest CBD modulates the properties of THC
- Effects on THC metabolism
- Direct actions of CBD (e.g., blocks cue-induced reinstatement of heroin self administration)

Summary

- •Cannabis—complex mixture of compounds, including THC (acting through CB_1 & CB_2 receptors), as well as other compounds (e.g., CBD)
- •THC produces its effects by interacting with the endocannabinoid system
- Very real differences between oral THC and medical marijuana
 - Pharmacokinetics
 - · Additional compounds present in cannabis
 - Standardization
 - Sativex

Subjective high versus plasma THC

- 15 mg THC, po
- Points are spaced
 30 minutes apart
- Peak high occurs as plasma levels are declining